首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   5篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   11篇
  2013年   7篇
  2012年   9篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   3篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  1999年   1篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1974年   1篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
1.
Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous “entourage” compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain.  相似文献   
2.
Mononuclear cells (MNC) derived from peripheral blood (PBMNC) of 23 normal donors and 4 AIDS patients, and from bone marrow (BMMNC) of 15 normal donors were incubated at 37 degrees C in culture medium alone or in the presence of either natural or recombinant human interleukin-2 (IL-2) or recombinant human interferon-gamma (IFN-gamma; 1-1,000 U/ml). The cultured cells were washed on days 1, 4 or 7 and tested for various immune functions in vitro and for cell surface phenotype. IL-2, but not IFN-gamma, was found mitogenic for both PBMNC and BMMNC. The natural killer (NK) activity of both PBMNC and BMMNC was the only function tested that was markedly augmented (over 100-fold compared to medium control) by both lymphokines. Pretreatment of PBMNC with IL-2 at greater than or equal to 10 U/ml profoundly suppressed (up to 90%) various functions, such as mitogenic responses (phytohemmagglutinin, concanavalin A, pokeweed mitogen), allogeneic mixed leukocyte reaction, antibody production and T cell colony formation in agar. In contrast, some BMMNC functions were elevated at low doses of IL-2 and IFN-gamma, and significant suppression of BMMNC was seen only with high doses of IL-2 (greater than or equal to 100 U/ml) and IFN-gamma (1,000 U/ml). IL-2 was by far more effective than IFN-gamma in both the amplification of NK activity and the suppression of most of the other functions. IL-2, but not IFN-gamma, was found to activate/induce suppressor cells and increased the proportion of Leu-2+ (CD8) cells in PBMNC; the suppressive effect was time- and dose-dependent. The IL-2-induced suppression could be diminished by inclusion of anti-IL-2 antibody during the pretreatment phase. Similar suppressive effects were noted in PBMNC from AIDS patients. These findings suggest that: (a) high-dose IL-2 may elicit immunosuppression which can be mediated by nondiscriminative highly cytotoxic cells (i.e. lymphokine-activated killer cells) and/or by noncytotoxic, nonspecific suppressor cells, and (b) that PBMNC respond differently to the lymphokines than do BMMNC.  相似文献   
3.
Dental tissue-derived stem cells (DSCs) provide an easy, accessible, relatively noninvasive promising source of adult stem cells (ASCs), which brought encouraging prospective for their clinical applications. DSCs provide a perfect opportunity to apply for a patient's own ASC, which poses a low risk of immune rejection. However, problems associated with the long-term culture of stem cells, including loss of proliferation and differentiation capacities, senescence, genetic instability, and the possibility of microbial contamination, make cell banking necessary. With the rapid development of advanced cryopreservation technology, various international DSC banks have been established for both research and clinical applications around the world. However, few studies have been published that provide step-by-step guidance on DSCs isolation and banking methods. The purpose of this review is to present protocols and technical details for all steps of cryopreserved DSCs, from donor selection, isolation, cryopreservation, to characterization and quality control. Here, the emphasis is on presenting practical principles in accordance with the available valid guidelines.  相似文献   
4.
Radiation therapy for patients with non‐small‐cell lung cancer is hampered by acute radiation‐induced toxicity in the esophagus. This study aims to validate that optical coherence tomography (OCT), a minimally invasive imaging technique with high resolution (~10 μm), is able to visualize and monitor acute radiation‐induced esophageal damage (ARIED) in mice. We compare our findings with histopathology as the gold standard. Irradiated mice receive a single dose of 40 Gy at proximal and distal spots of the esophagus of 10.0 mm in diameter. We scan mice using OCT at two, three, and seven days post‐irradiation. In OCT analysis, we define ARIED as a presence of distorted esophageal layering, change in backscattering signal properties, or change in the esophageal wall thickness. The average esophageal wall thickness is 0.53 mm larger on OCT when ARIED is present based on histopathology. The overall sensitivity and specificity of OCT to detect ARIED compared to histopathology are 94% and 47%, respectively. However, the overall sensitivity of OCT to assess ARIED is 100% seven days post‐irradiation. We validate the capability of OCT to detect ARIED induced by high doses in mice. Nevertheless, clinical studies are required to assess the potential role of OCT to visualize ARIED in humans.   相似文献   
5.
Diabetes affects a large population of the world. Lifestyle, obesity, dietary habits, and genetic factors contribute to this metabolic disease. A target pathway to control diabetes is the 5′-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. AMPK is a heterotrimeric protein with α, β, and γ subunits. In several studies, AMPK activation enhanced glucose uptake into cells and inhibited intracellular glucose production. Impairment of AMPK activity is present in diabetes, according to some studies. Drugs used in the treatment of diabetes, such as metformin, are also known to act through regulation of AMPK. Thus, drugs that activate and regulate AMPK are potential candidates for the treatment of diabetes. In addition, many patients encounter important adverse effects, like hypoglycemia, while using allopathic drugs. As a result, the investigation of plant-derived natural drugs that lack adverse side effects and treat diabetes is necessary. Natural products like berberine, quercetin, resveratrol, and so forth have shown significant potential in regulating and activating the AMPK pathway which can lead to manage diabetes mellitus and its complications.  相似文献   
6.
7.
The use of internal peptide standards in selected reaction monitoring experiments enables absolute quantitation. Here, we describe three approaches addressing calibration of peptide concentrations in complex matrices and assess their performance in terms of trueness and precision. The simplest approach described is single reference point quantitation where a heavy peptide is spiked into test samples and the endogenous analyte quantified relative to the heavy peptide internal standard. We refer to the second approach as normal curve quantitation. Here, a constant amount of heavy peptide and a varying amount of light peptide are spiked into matrix to construct a calibration curve. This accounts for matrix effects but due to the presence of endogenous analyte, it is usually not possible to determine the lower LOQ. We refer to the third method as reverse curve quantitation. Here, a constant amount of light peptide and a varying amount of heavy peptide are spiked into matrix to construct a calibration curve. Because there is no contribution to the heavy peptide signal from endogenous analyte, it is possible to measure the equivalent of a blank sample and determine LOQ. These approaches are applied to human plasma samples and used to assay peptides of a set of apolipoproteins.  相似文献   
8.
Metastasis is a leading cause of mortality and morbidity in cancer. Urokinase (uPA), only expressed by the highly invasive cancer cells, has been implicated in invasion, metastases, and angiogenesis of several malignancies including breast cancer. Because uPA expression is strongly correlated with its hypomethylated state, we utilized the uPA gene in the highly invasive MDA-231 human breast cancer cells as a model system to test the hypothesis that pharmacological reversal of the uPA promoter hypomethylation would result in its silencing and inhibition of metastasis. S-Adenosyl-l-methionine (AdoMet) has previously been shown to cause hypermethylation and inhibit demethylation. Treatment of MDA-231 cells with AdoMet, but not its unmethylated analogue S-adenosylhomocysteine, significantly inhibits uPA expression and tumor cell invasion in vitro and tumor growth and metastasis in vivo. The effects of AdoMet on uPA expression were reversed by the demethylating agent 5'-azacytidine, supporting the conclusion that AdoMet effects are caused by hypermethylation. Knockdown of the methyl-binding protein 2 also causes a significant inhibition of uPA expression in vitro and tumor growth and metastasis in vivo. These treatments did not have any effects on estrogen receptor expression, suggesting that inhibition of hypomethylation will not affect genes already silenced by hypermethylation. These data are consistent with the hypothesis that hypomethylation of critical genes like uPA plays a causal role in metastasis. Inhibition of hypomethylation can thus be used as a novel therapeutic approach to silence the pro-metastatic gene uPA and block breast cancer progression into the aggressive and metastatic stages of the disease.  相似文献   
9.
Human ether-a-go-go-related gene (hERG) potassium channels are critical determinants of cardiac repolarization. Loss of function of hERG channels is associated with Long QT Syndrome, arrhythmia, and sudden death. Acidosis occurring as a result of myocardial ischemia inhibits hERG channel function and may cause a predisposition to arrhythmias. Acidic pH inhibits hERG channel maximal conductance and accelerates deactivation, likely by different mechanisms. The mechanism underlying the loss of conductance has not been demonstrated and is the focus of the present study. The data presented demonstrate that, unlike in other voltage-gated potassium (Kv) channels, substitution of individual histidine residues did not abolish the pH dependence of hERG channel conductance. Abolition of inactivation, by the mutation S620T, also did not affect the proton sensitivity of channel conductance. Instead, voltage-dependent channel inhibition (δ = 0.18) indicative of pore block was observed. Consistent with a fast block of the pore, hERG S620T single channel data showed an apparent reduction of the single channel current amplitude at low pH. Furthermore, the effect of protons was relieved by elevating external K(+) or Na(+) and could be modified by charge introduction within the outer pore. Taken together, these data strongly suggest that extracellular protons inhibit hERG maximal conductance by blocking the external channel pore.  相似文献   
10.
Waglerin-1 (Wtx-1) is a 22-amino acid peptide that is a competitive antagonist of the muscle nicotinic receptor (nAChR). We find that Wtx-1 binds 2100-fold more tightly to the alpha-epsilon than to the alpha-delta binding site interface of the mouse nAChR. Moreover, Wtx-1 binds 100-fold more tightly to the alpha-epsilon interface from mouse nAChR than that from rat or human sources. Site-directed mutagenesis of residues differing in the extracellular domains of rat and mouse epsilon subunits indicates that residues 59 and 115 mediate the species difference in Wtx-1 affinity. Mutation of residues 59 (Asp in mouse, Glu in rat epsilon) and 115 (Tyr in mouse, Ser in rat epsilon) converts Wtx-1 affinity for the alpha-epsilon interface of one species to that of the other species. Studies of different mutations at position 59 indicate both steric and electrostatic contributions to Wtx-1 affinity, whereas at position 115, both aromatic and polar groups contribute to affinity. The human nAChR also has lower affinity for Wtx-1 than mouse nAChR, but unlike rat nAChR, residues in both alpha and epsilon subunits mediate the affinity difference. In human nAChR, polar residues (Ser-187 and Thr-189) confer low affinity, whereas in mouse nAChR aromatic residues (Trp-187 and Phe-189) confer high affinity. The overall results show that non-conserved residues at the nAChR binding site, although not crucial for activation by ACh, govern the potency of neuromuscular toxins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号