首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 78 毫秒
1
1.
Biomechanics and Modeling in Mechanobiology - Targeted drug delivery is an impressive topic that attracted the attention of many scientists in various scientific communities. Magnetic drug...  相似文献   
2.

In this paper, the effect of the turbulence and swirling of the inlet flow and the diameter of the nozzle on the flow characteristics and the particles' transport/deposition patterns in a realistic combination of the nasal cavity (NC) and the maxillary sinus (MS) were examined. A computational fluid dynamics (CFD) model was developed in ANSYS® Fluent using a hybrid Reynolds averaged Navier–Stokes–large-eddy simulation algorithm. For the validation of the CFD model, the pressure distribution in the NC was compared with the experimental data available in the literature. An Eulerian–Lagrangian approach was employed for the prediction of the particle trajectories using a discrete phase model. Different inlet flow conditions were investigated, with turbulence intensities of 0.15 and 0.3, and swirl numbers of 0.6 and 0.9 applied to the inlet flow at a flow rate of 7 L/min. Monodispersed particles with a diameter of 5 µm were released into the nostril for various nozzle diameters. The results demonstrate that the nasal valve plays a key role in nasal resistance, which damps the turbulence and swirl intensities of the inlet flow. Moreover, it was found that the effect of turbulence at the inlet of the NC on drug delivery to the MS is negligible. It was also demonstrated that increasing the flow swirl at the inlet and decreasing the nozzle diameter improves the total particle deposition more than threefold due to the generation of the centrifugal force, which acts on the particles in the nostril and vestibule. The results also suggest that the drug delivery efficiency to the MS can be increased by using a swirling flow with a moderate swirl number of 0.6. It was found that decreasing the nozzle diameter can increase drug delivery to the proximity of the ostium in the middle meatus by more than 45%, which subsequently increases the drug delivery to the MS. The results can help engineers design a nebulizer to improve the efficiency of drug delivery to the maxillary sinuses.

  相似文献   
3.
Administration of drug in the form of particles through inhalation is generally preferable in the treatment of respiratory disorders. Conventional inhalation therapy devices such as inhalers and nebulizers, nevertheless, suffer from low delivery efficiencies, wherein only a small fraction of the inhaled drug reaches the lower respiratory tract. This is primarily because these devices are not able to produce a sufficiently fine drug mist that has aerodynamic diameters on the order of a few microns. This study employs computational fluid dynamics to investigate the transport and deposition of the drug particles produced by a new aerosolization technique driven by surface acoustic waves (SAWs) into an in silico lung model geometrically reconstructed using computed tomography scanning. The particles generated by the SAW are released in different locations in a spacer chamber attached to a lung model extending from the mouth to the 6th generation of the lung bronchial tree. An Eulerian approach is used to solve the Navier–Stokes equations that govern the airflow within the respiratory tract, and a Lagrangian approach is adopted to track the particles, which are assumed to be spherical and inert. Due to the complexity of the lung geometry, the airflow patterns vary as it penetrates deeper into the lung. High inertia particles tend to deposit at locations where the geometry experiences a significant reduction in cross section. Our findings, nevertheless, show that the injection location can influence the delivery efficiency: Injection points close to the spacer centerline result in deeper penetration into the lung. Additionally, we found that the ratio of drug particles entering the right lung is significantly higher than the left lung, independent of the injection location. This is in good agreement with this fact that the most of airflow enters to the right lobes.  相似文献   
4.
Biomechanics and Modeling in Mechanobiology - The present study aims to investigate the effect of swirling flow on particle deposition in a realistic human airway. A computational fluid dynamic...  相似文献   
5.
Biomechanics and Modeling in Mechanobiology - Magnetic drug targeting (MDT) is a local drug delivery system which aims to concentrate a pharmacological agent at its site of action in order to...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号