首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   3篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2015年   4篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1998年   3篇
  1996年   2篇
  1991年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1947年   1篇
排序方式: 共有69条查询结果,搜索用时 78 毫秒
1.
Analysis of chick retinal and tectal RNA revealed that in addition to the major cytoplasmic RNAs (rRNA and tRNA), a number of the small mol wt nuclear RNAs (snRNAs) can also be detected. Subfractionation data indicated that one of these molecules, DD′, is of at least 95% nuclear location within the retina. Thus, very little, if any, of the retinal DD′ is available for axoplasmic transport from the retina into the optic nerve and tectum. Following intraocular injection of [3H]uridine, considerable incorporation of isotope into DD′ was observed within the optic tectum after 4, 8 and 16 days. This result indicates the presence of considerable local (i.e. tectal) synthesis. The specific activities of 29S, 18S and 5S rRNA and 4s tRNA relative to that of DD′ were measured in the optic tectum 8 and 16 days after the intraocular introduction of [3H]uridine. The same measurements were also made in intracranially injected animals. While the 29S/DD′, 18S/DD′ and 5S/DD′ specific activity ratios obtained were independent of the injection route, the 4S/DD′ ratio obtained from intraocularly injected animals was significantly greater (at least 2-fold) than that obtained from intracranially injected animals. Similar analysis was also performed with the optic nerve complex at 16 days post-injection with identical results. These results demonstrate that tRNA, but not rRNA, is transported from the retina into the optic nerve and tectum in the 2-day-old chicken.  相似文献   
2.
Intermittent reports of cytoskeleton proteins (actin and tubulin) on the cell surface have appeared over the last 13 years. Whereas most have concentrated on lymphocytes, this study provides evidence for the presence of these proteins on the surface of a human cultured monocyte-like cell line, U937. Both actin and tubulin were detected on the surface of U937 cells by flow cytometry, using an indirect staining procedure based on biotin-streptavidin-phycoerythrin, chosen for greater sensitivity. By use of this procedure, the majority of viable unstimulated U937 cells stained positively for actin and tubulin, although the level of fluorescence intensity was low. With an antibody specific for tyrosine-tubulin, most of the surface tubulin was also found to be tyrosinylated. For vimentin, an intermediate filament protein abundantly present in the cytoplasm of U937 cells, no staining could be detected. Confirmation of the flow cytometry data for surface actin and tubulin on unstimulated U937 cells was achieved by direct vesualization using a confocal laser scanning microscope. When U937 cells were activated with PMA and LPS, a marked reduction in the level of cell surface actin and tubulin occurred. The role of cell surface actin and tubulin on unstimulated U937 cells, in terms of monocyte function, remains to be elucidated.  相似文献   
3.
Abstract: The effect of unilateral eye extirpation on the development of the chick optic tectum has been studied in both the embryo and the newly hatched chick. Although the prevention of normal afferentation of the embryonic tectum retarded its growth, there appeared to be a significant increase of muscarinic acetylcholine binding site in the noninnervated tectum. This phenomenon was repeated also in the posthatch denervated system wherein the functioning optic nerve is severed. A significant increase in the number of binding sites as well as reduced dissociation constant of the interactions of this receptor with [3H]quinuclindinyl benzilate was found in the deafferented optic tectum. This may suggest the presence of a denervation-supersensitivity-like modulation. Similar increases were not detected with other binding sites studied in either the noninnervated embryonic or deafferented posthatch optic lobes. The possibility that acetylcholine is a primary neurotransmitter of the optic system is discussed.  相似文献   
4.
5.
Neisseria meningitides is a gram-negative diplococcus bacterium and is the main causative agent of meningitis and other meningococcal diseases. Alanine aminopeptidase from N. meningitides (NmAPN) belongs to the family of metallo-exopeptidase enzymes, which catalyze the removal of amino acids from the N-terminus of peptides and proteins, and are found among all the kingdoms of life. NmAPN is suggested to be mostly responsible for proteolysis and nutrition delivery, similar to the orthologs from other bacteria.  相似文献   
6.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
7.

Background  

Genomic sequence analyses have shown that horizontal gene transfer occurred during the origin of eukaryotes as a consequence of symbiosis. However, details of the timing and number of symbiotic events are unclear. A timescale for the early evolution of eukaryotes would help to better understand the relationship between these biological events and changes in Earth's environment, such as the rise in oxygen. We used refined methods of sequence alignment, site selection, and time estimation to address these questions with protein sequences from complete genomes of prokaryotes and eukaryotes.  相似文献   
8.
The investigation of airborne pollen and fungalspore concentrations was carried out in Cracowbetween 1997–1999. For this study thevolumetric method has been employed (Burkard).At the same time the clinical diagnosis ofpollen allergy in 40 patients was obtained onthe basis of an interview, positive skin pricktests with pollen extracts and increasedspecific IgE level. An increase in seasonalallergy symptoms in all patients occurred fromthe middle of May to the middle of August.Eighty eight percent of the patients (35 out of40) were sensitive to Poaceae pollen and about50% of them were additionally sensitive totree and herb pollen excluding grasses. Forpatients with additional allergy to tree pollenthe seasonal symptoms started at the end ofMarch (Betula) while for patients withadditional allergy to herb pollen it wasextended to the middle of September (Artemisia).Five people out of 40 revealed positive skinreactions to Alternaria spores and anincrease in specific IgE level. Positive skinreaction to Cladosporium spores with noincrease in specific IgE level occurred in 2patients. The increase in seasonal allergysymptoms in people sensitive to Alternariaspores noted in July and August could becaused not only by these spores but also byPoaceae pollen.  相似文献   
9.
Shugoshin (SGO1) plays a pivotal role in sister chromatid cohesion during mitosis by protecting the centromeric cohesin from mitotic kinases and WAPL. Mammalian cells contain at least 6 alternatively spliced isoforms of SGO1. The relationship between the canonical SGO1A with shorter isoforms including SGO1C remains obscure. Here we show that SGO1C was unable to replace the loss of SGO1A. Instead, expression of SGO1C alone induced aberrant mitosis similar to depletion of SGO1A, promoting premature sister chromatid separation, activation of the spindle-assembly checkpoint, and mitotic arrest. In disagreement with previously published data, we found that SGO1C localized to kinetochores. However, the ability to induce aberrant mitosis did not correlate with its kinetochore localization. SGO1C mutants that abolished binding to kinetochores still triggered premature sister chromatid separation. We provide evidence that SGO1C-mediated mitotic arrest involved the sequestering of PP2A–B56 pool. Accordingly, SGO1C mutants that abolished binding to PP2A localized to kinetochores but did not induce aberrant mitosis. These studies imply that the expression of SGO1C should be tightly regulated to prevent dominant-negative effects on SGO1A and genome instability.  相似文献   
10.
Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (K(weak) channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by shifting its activation threshold far positive (>200 mV) so that it closes only at voltages positive of +100 mV. In its phosphorylated form, AKT2 is thus locked in the open state in the entire physiological voltage range. To understand the molecular grounds of this unique gating behavior, we generated chimeras between AKT2 and the conventional inward-rectifying channel KAT1. The transfer of the pore from KAT1 to AKT2 altered the permeation properties of the channel. However, the gating properties were unaffected, suggesting that the pore region of AKT2 is not responsible for the unique K(weak) gating. Instead, a lysine residue in S4, highly conserved among all K(weak) channels but absent from other plant K+ channels, was pinpointed in a site-directed mutagenesis approach. Substitution of the lysine by serine or aspartate abolished the "open-lock" characteristic and converted AKT2 into an inward-rectifying channel. Interestingly, phosphoregulation of the mutant AKT2-K197S appeared to be similar to that of the K(in) channel KAT1: as suggested by mimicking the phosphorylated and dephosphorylated states, phosphorylation induced a shift of the activation threshold of AKT2-K197S by about +50 mV. We conclude that the lysine residue K197 sensitizes AKT2 to phosphoregulation. The phosphorylation-induced reduction of the activation energy in AKT2 is approximately 6 kT larger than in the K197S mutant. It is discussed that this hypersensitive response of AKT2 to phosphorylation equips a cell with the versatility to establish a potassium gradient and to make efficient use of it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号