首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2000年   3篇
  1988年   3篇
  1986年   1篇
  1980年   2篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
A hemagglutinating activity was detected in a synaptic vesicle-enriched fraction prepared from adult rat brain, using trypsinized glutaraldehyde-fixed rabbit erythrocytes. The specific activity of the fraction, in two series of experiments, was 7.5 and 16-fold higher than in the other subcellular fractions. The activity was absent from the synaptosome cytosol. In a study using twenty-five different carbohydrates and glycoproteins, best inhibitors were N-acetylneuraminic acid and N-glycolylneuraminic acid, together with bovine submaxillary mucin and a glycopeptide fraction prepared from rabbit erythrocyte membranes. The activity was thermolabile and very sensitive to proteolytic enzymes (but insensitive to neuraminidase) indicating that a protein (agglutinin) is responsible for the activity. Experiments using detergents and high ionic strength showed that the agglutinin is tightly bound to membranes, inactivated by the so-called non denaturing detergents, and stable in diluted sodium dodecyl sulphate. Hypotheses are discussed on the possible function of the agglutinin.  相似文献   
2.
The contribution that oxidative damage to DNA and/or RNA makes to the aging process remains undefined. In this study, we used the hMTH1‐Tg mouse model to investigate how oxidative damage to nucleic acids affects aging. hMTH1‐Tg mice express high levels of the hMTH1 hydrolase that degrades 8‐oxodGTP and 8‐oxoGTP and excludes 8‐oxoguanine from both DNA and RNA. Compared to wild‐type animals, hMTH1‐overexpressing mice have significantly lower steady‐state levels of 8‐oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age‐dependent accumulation of DNA 8‐oxoguanine that occurs in wild‐type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1‐Tg animals live significantly longer than their wild‐type littermates. Neither lipid oxidation nor overall antioxidant status is significantly affected by hMTH1 overexpression. At the cellular level, neurospheres derived from adult hMTH1‐Tg neural progenitor cells display increased proliferative capacity and primary fibroblasts from hMTH1‐Tg embryos do not undergo overt senescence in vitro. The significantly lower levels of oxidized DNA/RNA in transgenic animals are associated with behavioral changes. These mice show reduced anxiety and enhanced investigation of environmental and social cues. Longevity conferred by overexpression of a single nucleotide hydrolase in hMTH1‐Tg animals is an example of lifespan extension associated with healthy aging. It provides a link between aging and oxidative damage to nucleic acids.  相似文献   
3.
4.
NMDA receptor‐mediated excitotoxicity is thought to play a pivotal role in the pathogenesis of Huntington's disease (HD). The neurotrophin brain‐derived neurotrophic factor (BDNF), which is also highly involved in HD and whose effects are modulated by adenosine A2ARs, influences the activity and expression of striatal NMDA receptors. In electrophysiology experiments, we investigated the role of BDNF toward NMDA‐induced effects in HD models, and the possible involvement of A2ARs. In corticostriatal slices from wild‐type mice and age‐matched symptomatic R6/2 mice (a model of HD), NMDA application (75 μM) induced a transient or a permanent (i.e., toxic) reduction of field potential amplitude, respectively. BDNF (10 ng/mL) potentiated NMDA effects in wild‐type, while it protected from NMDA toxicity in R6/2 mice. Both effects of BDNF were prevented by A2AR blockade. The protective effect of BDNF against NMDA‐induced toxicity was reproduced in a cellular model of HD. These findings may have very important implications for the neuroprotective potential of BDNF and A2AR ligands in HD.  相似文献   
5.
Previous studies have demonstrated opposing roles for adenosine A1 and A2A receptors in the modulation of extracellular levels of glutamate and dopamine in the striatum. In the present study, acute systemic administration of motor-activating doses of the A2A receptor antagonist MSX-3 significantly decreased extracellular levels of dopamine and glutamate in the shell of the rat nucleus accumbens (NAc) and counteracted both dopamine and glutamate release induced by systemic administration of motor-activating doses of either the A1 receptor antagonist CPT or caffeine. Furthermore, exposure to caffeine in the drinking water (1 mg/mL, 14 days) resulted in tolerance to the effects of systemic injection of CPT or caffeine, but not MSX-3, on extracellular levels of dopamine and glutamate in the NAc shell. The present results show: first, the existence of opposite tonic effects of adenosine on extracellular levels of dopamine and glutamate in the shell of the NAc mediated by A1 and A2A receptors; second, that complete tolerance to caffeine's dopamine- and glutamate-releasing effects which develops after chronic caffeine exposure is attributable to an A1 receptor-mediated mechanism. Development of tolerance to the dopamine-releasing effects of caffeine in the shell of the NAc may explain its weak addictive properties and atypical psychostimulant profile.  相似文献   
6.

Background

Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.

Methodology/Findings

Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine) and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated), and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486). On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats). Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.

Conclusions/Significance

Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress, shown here for the first time, could be related to the therapeutic action of these drugs.  相似文献   
7.

Background

The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.

Principal Findings

In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL) and control Flinders Depression Resistant (FRL) lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7) and serotonergic receptors (Htr1a, Htr2a) in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.

Conclusions

These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research.  相似文献   
8.
Glutamate-mediated excitotoxicity plays a major role in the degeneration of motor neurons in amyotrophic lateral sclerosis and reduced astrocytary glutamate transport, which in turn increases the synaptic availability of the amino acid neurotransmitter, was suggested as a cause. Alternatively, here we report our studies on the exocytotic release of glutamate as a possible source of excessive glutamate transmission. The basal glutamate efflux from spinal cord nerve terminals of mice-expressing human soluble superoxide dismutase (SOD1) with the G93A mutation [SOD1/G93A(+)], a transgenic model of amyotrophic lateral sclerosis, was elevated when compared with transgenic mice expressing the wild-type human SOD1 or to non-transgenic controls. Exposure to 15 mM KCl or 0.3 μM ionomycin provoked Ca(2+)-dependent glutamate release that was dramatically increased in late symptomatic and in pre-symptomatic SOD1/G93A(+) mice. Increased Ca(2+) levels were detected in SOD1/G93A(+) mouse spinal cord nerve terminals, accompanied by increased activation of Ca(2+)/calmodulin-dependent kinase II and increased phosphorylation of synapsin I. In line with these findings, release experiments suggested that the glutamate release augmentation involves the readily releasable pool of vesicles and a greater capability of these vesicles to fuse upon stimulation in SOD1/G93A(+) mice.  相似文献   
9.
In recent years there has been an increasing awareness of the role of P2X7, a receptor for extracellular ATP, in modulating physiopathological mechanisms in the central nervous system. In particular, P2X7 has been shown to be implicated in neuropsychiatry, chronic pain, neurodegeneration and neuroinflammation. Remarkably, P2X7 has also been shown to be a ‘gene modifier’ in amyotrophic lateral sclerosis (ALS): the receptor is upregulated in spinal cord microglia in human and rat at advanced stages of the disease; in vitro, activation of P2X7 exacerbates pro-inflammatory responses in microglia that have an ALS phenotype, as well as toxicity towards neuronal cells. Despite this detrimental in vitro role of P2X7, in SOD1-G93A mice lacking P2X7, the clinical onset of ALS was significantly accelerated and disease progression worsened, thus indicating that the receptor might have some beneficial effects, at least at certain stages of disease. In order to clarify this dual action of P2X7 in ALS pathogenesis, in the present work we used the antagonist Brilliant Blue G (BBG), a blood-brain barrier permeable and safe drug that has already been proven to reduce neuroinflammation in traumatic brain injury, cerebral ischemia-reperfusion, neuropathic pain and experimental autoimmune encephalitis. We tested BBG in the SOD1-G93A ALS mouse model at asymptomatic, pre-symptomatic and late pre-symptomatic phases of disease. BBG at late pre-onset significantly enhanced motor neuron survival and reduced microgliosis in lumbar spinal cord, modulating inflammatory markers such as NF-κB, NADPH oxidase 2, interleukin-1β, interleukin-10 and brain-derived neurotrophic factor. This was accompanied by delayed onset and improved general conditions and motor performance, in both male and female mice, although survival appeared unaffected. Our results prove the twofold role of P2X7 in the course of ALS and establish that P2X7 modulation might represent a promising therapeutic strategy by interfering with the neuroinflammatory component of the disease.KEY WORDS: ALS, Brilliant Blue G, Microglia, Motor neuron, P2X7  相似文献   
10.
The A2A adenosine receptor (A2AR) is widely distributed on different cellular types in the brain, where it exerts a broad spectrum of pathophysiological functions, and for which a role in different neurodegenerative diseases has been hypothesized or demonstrated. To investigate the role of neuronal A2ARs in neurodegeneration, we evaluated in vitro and in vivo the effect of the neurotoxin 3-nitropropionic acid (3-NP) in a transgenic rat strain overexpressing A2ARs under the control of the neural-specific enolase promoter (NSEA2A rats). We recorded extracellular field potentials (FP) in corticostriatal slice and found that the synaptotoxic effect of 3-NP was significantly reduced in NSEA2A rats compared with wild-type animals (WT). In addition, after exposing corticostriatal slices to 3-NP 10 mM for 2 h, we found that striatal cell viability was significantly higher in NSEA2A rats compared to control rats. These in vitro results were confirmed by in vivo experiments: daily treatment of female rats with 3-NP 10 mg/kg for 8 days induced a selective bilateral lesion in the striatum, which was significantly reduced in NSEA2A compared to WT rats. These results demonstrate that the overexpression of the A2AR selectively at the neuronal level reduced 3-NP-induced neurodegeneration, and suggest an important function of the neuronal A2AR in the modulation of neurodegeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号