首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   2篇
  64篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2013年   4篇
  2012年   11篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有64条查询结果,搜索用时 0 毫秒
1.
Molecular Biology - The factors that affect the labeling of NIH 3T3 murine fibroblasts with Fe3O4-based magnetic nanoparticles (MNPs) were studied using MNPs produced by the gas condensation and...  相似文献   
2.
Extracellular cell matrices deposited by cells stimulate cell proliferation. However, their generation is cumbersome and time consuming. We show here that controlled fixation of fibronectin layers after coating culture vessels significantly enhances expansion of murine and human mesenchymal stem cells (MSCs) and, to a lesser extent, primary fibroblasts. In contrast, fibronection fixation did not stimulate proliferation of established cancer cell lines. Fixed vitronectin or collagen IV layers also enhanced proliferation of murine MSCs. Thus, controlled formaldehyde fixation of layers formed by fibronectin or some other extracellular matrix components represents a simple and reproducible way to enhance proliferation of primary cells.  相似文献   
3.
Previously, using concentrated solutions of PCR products of five different genes, we described the appearance in these solutions of DNA structures with molecular weights approximately twice greater than that of double-strand (ds) fragments and with even higher molecular weight. Since this phenomenon was shown to be not dependent on the size or sequence of the DNA fragments, we suggested that it is due to interaction of DNA duplexes. The double-sized dsDNA complex containing four polynucleotide strands of two DNA fragments was named a "tetramer". Our present work is devoted to elucidation of peculiarities of tetramer formation and its structure in solutions of a purified PCR product of p53 cDNA. We found that the intensity of tetramer formation depends on the concentration of the PCR product in solution. Three subsequent purifications of the PCR product were performed using DNA-binding matrix, but the tetramers appeared again after every procedure. After purification of PCR product preliminarily treated with S1-nuclease, tetramers appeared again, indicating that these structures are formed from dsDNA fragments. Purification of the tetramers on DNA-binding matrix led to the appearance of the initial dsDNA fragments as the main DNA structure. When electroelution and column filtration by centrifugation were used, the purification procedure was speeded up, and a solution with a higher amount of the tetramer was obtained. Electron microscopy revealed the presence of four-stranded symmetrical structures with crossing chains known as Holliday junctions. Thus, for the first time the ability of homologous dsDNA fragments to interact with the formation of Holliday junctions without participation of cell proteins has been demonstrated.  相似文献   
4.
5.
Three proteins, namely, the core protein C and envelope glycoproteins E1 and E2, are main structural proteins forming a hepatitis C virus (HCV) virion. The virus structure and assembly and the role of the structural proteins in virion morphogenesis remain unknown because of the lack of an efficient culture system for HCV to be grown in vitro. Highly efficient heterologous expression systems make it possible to obtain self-assembled, nonreplicating, genome-lacking particles that are morphologically similar to intact virions. Using recombinant baculoviruses expressing the HCV structural protein genes in insect cells, the individual HCV structural proteins were expressed to 25–35% of the total cell protein, and the CE1 and E1E2 heterodimers and HCV-like particles were obtained. It was demonstrated that the recombinant C, E1, and E2 proteins underwent posttranslational modification, the glycoproteins formed a noncovalent heterodimer, and HCV- like particles were located in endoplasmic reticulum membranes of infected cells. The formation of E1E2 dimers and HCV-like particles was used to study the effect of E1 glycosylation on the expression and processing of the coat proteins.  相似文献   
6.
The hordeiviral movement protein encoded by the first gene of the triple gene block (TGBp1) of Poa semilatent virus (PSLV), interacts with viral genomic RNAs to form RNP particles which are considered to be a form of viral genome capable of cell-to-cell and long-distance transport in infected plants. The PSLV TGBp1 contains a C-terminal NTPase/helicase domain (HELD) and an N-terminal extension region consisting of two structurally and functionally distinct domains: an extreme N-terminal domain (NTD) and an internal domain (ID). This study demonstrates that transient expression of TGBp1 fused to GFP in Nicotiana benthamiana leaves results in faint but obvious fluorescence in the nucleolus in addition to cytosolic distribution. Mutagenesis of the basic amino acids inside the NTD clusters A 116KSKRKKKNKK125 and B 175KKATKKESKKQTK187 reveals that these clusters are indispensable for nuclear and nucleolar targeting of PSLV TGBp1 and may contain nuclear and nucleolar localization signals or their elements. The PSLV TGBp1 is able to bind to fibrillarin, the major nucleolar protein (AtFib2 from Arabidopsis thaliana) in vitro. This protein–protein interaction occurs between the glycine-arginine-rich (GAR) domain of fibrillarin and the first 82 amino acid residues of TGBp1. The interaction of TGBp1 with fibrillarin is also visualized in vivo by bimolecular fluorescence complementation (BiFC) during co-expression of TGBp1 or its deletion mutants, and fibrillarin as fusions to different halves of YFP in N. benthamiana plants. The sites responsible for nuclear/nucleolar localization and fibrillarin binding, have been located within the intrinsically disordered TGBp1 NTD. These data could suggest that specific functions of hordeivirus TGBp1 may depend on its interaction with nucleolar components.  相似文献   
7.
We showed earlier that nucleoli in interphase ciliates Didinium nasutum, appearing on single ultrathin sections as individual structures, actually are parts of more complex network-like structures in which fibrillar component is located on periphery, and granular--in the central part of a nucleolus. It is known, that nucleolar organizers in D. nasutum are represented by chromatin bodies connected with nucleoli. In this work we used 3D reconstruction on the basis of serial ultrathin sections to study localization of chromatin bodies which by morphological criteria might correspond to nucleolar organizers. Our data showed, that all such chromatin bodies settled down outside of nucleoli, near the periphery of fibrillar component. Even those chromatin bodies which on single sections looked completely surrounded by fibrillar nucleolar component, actually settled down in fibrillar component cavities open to nucleoplasm. Analysis of distribution of nucleolar chromatin bodies allowed us to conclude that activity in different parts of interphase complex network-like nucleoli of D. nasutum is approximately the same.  相似文献   
8.
Viral hepatitis C is a dangerous, widespread human disease. The choice of drugs for treatment of chronic hepatitis C virus (HCV) infection is limited, and prophylactic vaccines do not exist. Thus, the development of new antiviral strategies and substances is an issue of great importance. The targeting of viral morphogenesis might be used as an alternative approach to existing strategies of HCV blocking. The glycosylation of viral envelope proteins is an important step of viral particle morphogenesis, which determines the correct assembly of HCV virions. Derivatives of a glucose analog deoxynojirimycin (DNJ) act as an α-glucosidase inhibitor and can impair the assembly of structural proteins and HCV particle formation. In the present work, the effects of alkylated DNJ derivatives, N-pentyl-DNJ and N-benzyl-DNJ, on HCV morphogenesis were studied in a model system of insect cells that produce three viral structural proteins with the formation of virus-like particles. It was shown that DNJ derivatives impair the intracellular N-glycosylation of HCV envelope glycoproteins. At the concentration of 1 mM, these substances cause an increase in the levels of gpE1 and gpE2 glycoproteins and a decrease in their electrophoretic mobility, apparently due to the inhibition of α-glucosidase in the endoplasmic reticulum and the accumulation of hyperglycosylated N-glycans in HCV glycoproteins. The interaction of the latter with calnexin results in the formation of unproductive dimers and blocks the productive assembly of virus-like particles.  相似文献   
9.
The nucleolar organization in ciliate Didinium nasutum somatic interphase nuclei was studied using serial ultrathin sections and compared for various physiological states of the cell, namely, fed ciliates, starved ciliates, and dormant cysts. It has been shown that the interphase nucleoli are large structures with a complex architecture: the fibrillar component forms an intricate network in the macronucleus space, while the granular component is located inside this network. The structures looking as individual nucleoli in single sections are actually parts of branched nucleolar networks. The intricate nucleolar networks do not disintegrate after a 30-h starvation; however, the granular component becomes denser and develops numerous cavities filled with fine fibrils of a nonribonucleoprotein nature. In fed D. nasutum, the fibrillar structures on the periphery of nucleoli contain numerous pores (virtually absent in starved cell nucleoli), which can potentially serve for transporting newly synthesized rRNP. Branched nucleolar networks are undetectable in cysts. Their nucleoli are individual structures consisting mainly of the fibrogranular component.  相似文献   
10.
A comparative study of nucleolar organization in the somatic nuclei of the ciliate Didinium nasutum was carried out using 3D reconstruction on the basis of serial ultrathin sections. Recently fed interphase ciliates, starved interphase ciliates and cysts were studied. The nucleoli at the interphase stage were shown to have a complex architecture: the fibrillar component forms a complicated network, the granular component is located inside of it. It was shown that nucleoli, which look like individual structures in single sections, are in fact parts of branched nucleolar networks. A 30-h starvation doesn't lead to disintegration of these networks. However in the starved cells the granular component becomes more dense and vacuolized. In the fed ciliates there are many holes in the fibrillar component, whereas in starved ones the fibrillar component is virtually devoid of them. These holes can be proposed to ensure the transport of newly synthesized rRNP. The nucleolar networks didn't occur in D. nasutum cysts. Nucleoli in the cysts look like small individual structures, mainly consisting of fibrogranular component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号