首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
  51篇
  2024年   2篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有51条查询结果,搜索用时 0 毫秒
1.
The goal of this paper was to determine the contribution of the mitochondrial branched chain aminotransferase (BCATm) to branched chain alpha-keto acid transport within rat heart mitochondria. Isolated heart mitochondria were treated with sulfhydryl reagents of varying permeability, and the data suggest that essential cysteine residues in BCATm are accessible from the cytosolic face of the inner membrane. Treatment with 15 nmol/mg N-ethylmaleimide (NEM) inhibited initial rates of alpha-ketoisocaproate (KIC) uptake in reconstituted mitochondrial detergent extracts by 70% and in the intact organelle by 50%. KIC protected against inhibition suggesting that NEM labeled a cysteine residue that is inaccessible when substrate is bound to the enzyme. Additionally, the apparent mitochondrial equilibrium KIC concentration was decreased 50-60% after NEM labeling, and this difference could not be attributed to effects of NEM on matrix pH or KIC oxidation. In fact, NEM was a better inhibitor of KIC oxidation than rotenone. Measuring matrix aspartate and glutamate levels revealed that the effects of NEM on the steady-state KIC concentration resulted from inhibition of BCATm catalyzed transamination of KIC with matrix glutamate to form leucine. Furthermore, circular dichroism spectra of recombinant human BCATm with liposomes showed that the commercial lipids used in the reconstituted transport assay contain BCAT amino acid substrates. Thus BCATm is distinct from the branched chain alpha-keto acid carrier but may interact with the inner mitochondrial membrane, and it is necessary to inhibit or remove transaminase activity in both intact and reconstituted systems prior to quantifying transport of alpha-keto acids which are transaminase substrates.  相似文献   
2.
  总被引:1,自引:7,他引:1  
Using site-directed mutagenesis we have investigated the catalytic residues in a xylanase from Bacillus circulans. Analysis of the mutants E78D and E172D indicated that mutations in these conserved residues do not grossly alter the structure of the enzyme and that these residues participate in the catalytic mechanism. We have now determined the crystal structure of an enzyme-substrate complex to 108 A resolution using a catalytically incompetent mutant (E172C). In addition to the catalytic residues, Glu 78 and Glu 172, we have identified 2 tyrosine residues, Tyr 69 and Tyr 80, which likely function in substrate binding, and an arginine residue, Arg 112, which plays an important role in the active site of this enzyme. On the basis of our work we would propose that Glu 78 is the nucleophile and that Glu 172 is the acid-base catalyst in the reaction.  相似文献   
3.
Biomechanics and Modeling in Mechanobiology - Living soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set...  相似文献   
4.
    
LiF:Mg,Cu,Ag is a new dosimetry material that is similar to LiF:Mg,Cu,P in terms of dosimetric properties. The effect of the annealing temperature in the range of 200 to 350°C on the thermoluminescence (TL) sensitivity and the glow curve structure of this material at different concentrations of silver (Ag) was investigated. It has been demonstrated that the optimum values of the annealing temperature and the Ag concentration are 240°C and 0.1 mol% for better sensitivity, respectively. The TL intensity decreases at annealing temperatures lower than 240°C or higher than 240°C, reaching a minimum at 300°C and then again increases for various Ag concentrations. It was observed that the glow curve structure altered and the area under the low temperature peak as well as the area under the main dosimetric peak decreased with increasing annealing temperature. The position of the main dosimetric peak moved in the direction of higher temperatures, but at 320 and 350°C annealing temperatures, it shifted to lower temperatures. It was also observed that the TL sensitivity could partially be recovered by a combined annealing procedure.  相似文献   
5.
The ability of the wild-type XIAP BIR3 domain as well as its Trp323Ser variant in inhibition of human caspase-9, binding to AVPFVASLPN (SMAC-peptide), SMAC protein, and mature caspase-9 was investigated. In order to investigate the role of W323 on these interactions, this residue was mutated to Serine. Circular dichroism as well as thermal denaturation studies showed that W323S mutation did not hamper proper folding of the protein. The dissociation constants for the interaction of the wild type BIR3 as well as its mutant to Smac-type peptide were found to be 1.8 and 27 muM, respectively. The inhibition of and binding to caspase-9 by wild-type BIR3 and its mutant were also compared. While the wild-type protein potently inhibited the enzyme, the mutant failed to do so. The lack of caspase-9 inhibition was due to absence of interaction of the mutant BIR3 with mature caspase-9. These results indicate that Trp323 of BIR3 plays a pivotal role both in maintaining necessary conformation for caspase-9 interaction and to a lesser extent, recognition of Smac-type peptide. Moreover, decreased stability of the mutant compared with the wild type indicates that W323 is essential for maintaining the stability BIR3-Smac-peptide complex.  相似文献   
6.
The introduction of disulfide bonds has been used as a strategy to enhance the stability of Bacillus circulans xylanase. The transition temperature of the S100C/N148C (DS1), V98C/A152C (DS2), and A1GC/G187,C188 (cXl) in comparison to the wild type was increased by 5.0, 4.1 and 3.8 degrees C, respectively. Interestingly, a combination of two disulfide bonds of DS1 and cXl (cDS1, circular disulfide 1) led to a 12 degrees C increase in the transition temperature. Importantly, an increase in the melting point and DeltaDeltaG values of the cDS1 mutant was cooperative. These results suggest that the mechanism of stabilization by disulfide bonds under irreversible denaturation condition is achieved through: (1) a change in the rate-limiting step on the denaturation pathway; (2) destabilizing the unfolded state without affecting the relative rate constants on the denaturation pathway (like cXl mutant); and (3) or combination of the two (cDS1 mutant).  相似文献   
7.
    
In vitro studies have demonstrated that the differentiation of embryonic stem cells (ESCs) into cardiomyocytes requires activation of caspases through the mitochondrial pathway. These studies have relied on synthetic substrates for activity measurements, which can be misleading due to potential none-specific hydrolysis of these substrates by proteases other than caspases. Hence, caspase-9 and caspase-3 activation are investigated during the differentiation of human ESCs (hESCs) by directly assessing caspase-9 and -3 cleavage. Western blot reveals the presence of the cleaved caspase-9 prior to and during the differentiation of human ESCs (hESCs) into cardiomyocytes at early stages, which diminishes as the differentiation progresses, without cleavage and activation of endogenous procaspase-3. Activation of exogenous procaspase-3 by endogenous caspase-9 and subsequent cleavage of chromogenic caspase-3 substrate i.e. DEVD-pNA during the course of differentiation confirmes that endogenous caspase-9 has the potency to recognize and activate procaspase-3, but for reasons that are unknown to us fails to do so. These observations suggest the existence of distinct mechanisms of caspase regulation in differentiation as compared to apoptosis. Bioinformatics analysis suggests the presence of caspase-9 regulators, which may influence proteolytic function under specific conditions.  相似文献   
8.
Ability of the full length NAIP and its BIR3 domain in inhibition of the proteases of the intrinsic apoptosis pathway was investigated. Activity of endogenous executioner caspases was drastically reduced by both recombinant NAIP-BIR3 (NBIR3) and the full length protein. Western blotting experiments showed that the full length NAIP and its BIR3 domain inhibited the cleavage of procaspase-3 by apoptosome activated caspase-9. Moreover, full length NAIP inhibited autocatalytic processing of procaspase-9 in the apoptosome complex indicating that unlike other inhibitor of apoptosis proteins (IAPs) human NAIP is an inhibitor of procaspase-9. Furthermore, inhibition of single-chain caspase-9 (human caspase-9, D315, D330/A point mutations that abrogate the proteolytic processing but not the catalytic activity of caspase-9) by the BIR3 domain indicated that the this domain is the caspase-9 interacting moiety. Consistently, pull-down experiments of single-chain capsase-9 in apoptosome complex by the NBIR3 but not the X-linked inhibitor of apoptosis protein (XIAP)-BIR3 domain confirmed that the protein can associate with procaspase-9 prior to its autoproteolysis upon apoptosome formation. Interaction studies revealed the association of C338W variant of the NBIR3, but not the wild type protein with both SMAC-peptide and the SMAC protein. These data indicate that mutation of C338 to Trp is sufficient to accommodate the interaction of NAIP-BIR3 with SMAC-peptide and protein. Taken together, these results demonstrate that NAIP is evolved to prevent apoptosis right at the initiation stage of apoptosome formation and this inhibition cannot be antagonized by SMAC-type proteins.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号