首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   9篇
  2023年   3篇
  2022年   6篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   10篇
  2014年   10篇
  2013年   12篇
  2012年   23篇
  2011年   14篇
  2010年   10篇
  2009年   6篇
  2008年   3篇
  2007年   8篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   5篇
  2000年   2篇
  1999年   3篇
  1996年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1980年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有161条查询结果,搜索用时 31 毫秒
1.
A sequence comparison of the two membrane-associated (MA) domains of the cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance transporter (MDR), and -factor pheromone export system (STE6) proteins, each of which are believed to contain a total of 12 transmembrane (TM) segments, reveals significant amino acid homology and length conservation in the loop regions that connect individual TM sequences. Similar structural homology is observed between these proteins, hemolysin B (HLYB) and the major histocompatibility-linked peptide transporter, HAM1, the latter two which contain a single MA domain composed of six TM segments. In addition, there are specific sequences that are conserved within the TM segments of the five different membrane proteins. This observation suggests that the folding topologies of the MA domains of MDR, STE6, and CFTR in the plasma membrane are likely to be very similar. The sequence analysis also reveals that there are three characteristic motifs (a pair of aromatic residues, LTLXXXXXXP and GXXL) that are conserved in MDR, STE6, HLYB, HAM1, but not in CFTR. We propose that although CFTR may be evolutionarily related to these other membrane proteins, it belongs to a separate subclass.  相似文献   
2.
In the native folded conformation of a globular protein, amino acid residues distant along the polypeptide chain come together to form the compact structure. This spatial structure is such that most of the polar residues are on the surface and have contact with the solvent medium and the nonpolar residues buried in the interior which have contact with similar nonpolar side chains. This cooperativity and mutual interaction among the randomly aligned amino acid residues suggest that each type of residue may prefer to have a specific environment. To gain more insight into this aspect of residue-residue cooperativity, a detailed analysis of the preferred environment associated with each of the 20 different amino acid residues in a number of protein crystals has been carried out. The variation of nonpolar nature computed for different sizes of spheres shows that the spatial region between radii of 6 and 8 Å is more favored for hydrophobic interactions and indicates that the influence of each residue over the surrounding medium extends predominantly up to a distance of 8 Å. The analysis of the surrounding amino acid residues associated with each type of residue shows that there is a definite tendency for each type of residue to have association with specific residues. The variation in environment is found even within the polar group as well as in the nonpolar group of residues. The surrounding residues associated with isoleucine, leucine, and valine are purely nonpolar. Proline, a nonpolar residue, is often surrounded by polar residues. The surrounding nonpolar nature of the tryptophan and tyrosine residues implies that even a single polar atom in a nonpolar side chain is sufficient to reduce their hydrophobic environment. There exists a high degree of mutual residue-residue cooperativity between the pairs glutamic acid-lysine, methionine-arginine, asparagine-tryptophan, and glutamine-proline, and the mutual residue-residue noncooperativity is high for the pairs methionine-aspartic acid, cysteine-glutamic acid, histidine-glutamine, and leucine-asparagine. The formation of secondary and tertiary structures is discussed in terms of the preferred environment and mutual cooperativity among various types of amino acid residues.  相似文献   
3.
The binding sites of indole-based gelation inhibitors with sickle cell hemoglobin were investigated by two parallel theoretical approaches. A geometric approach originated by Kuntz and co-workers uses a spatial buildup scheme to locate potential binding regions, while a hybrid grid/geometric search method searches for specific indole ring binding pockets over the hemoglobin surface. The binding sites derived from these calculations were tested for their ability to accommodate indole rings by means of accessibility calculations with probes of various radii. These sites were further scanned for van der Waals' overlap and electrostatic interactions. A full 5BrTrp residue was built in each indole ring binding site, and its conformational energy of association with sickle hemoglobin was calculated at that site. Our theoretical results predict a total of 14 potential binding regions, including all of the sites observed from X-ray crystallography, and sites that are consistent with solution nuclear magnetic resonance studies.  相似文献   
4.
Cardiac myosin binding protein-C (cMyBP-C) is a multi-domain (C0–C10) protein that regulates heart muscle contraction through interaction with myosin, actin and other sarcomeric proteins. Several mutations of this protein cause familial hypertrophic cardiomyopathy (HCM). Domain C1 of cMyBP-C plays a central role in protein interactions with actin and myosin. Here, we studied structure-function relationship of three disease causing mutations, Arg177His, Ala216Thr and Glu258Lys of the domain C1 using computational biology techniques with its available X-ray crystal structure. The results suggest that each mutation could affect structural properties of the domain C1, and hence it’s structural integrity through modifying intra-molecular arrangements in a distinct mode. The mutations also change surface charge distributions, which could impact the binding of C1 with other sarcomeric proteins thereby affecting contractile function. These structural consequences of the C1 mutants could be valuable to understand the molecular mechanisms for the disease.  相似文献   
5.
Biological Trace Element Research - Chronic non-healing diabetic foot ulcers (DFU) with a recurrence rate of over 50% in 3 years account for more than 1,08000 non-traumatic lower extremity...  相似文献   
6.
7.
In Vitro Cellular & Developmental Biology - Plant - A reliable and economically feasible in vitro plant regeneration protocol has been standardized for the Psoralea corylifolia Linn. using...  相似文献   
8.
9.
10.
Rats fed excess vitamin A showed decreased body weight gain and protein efficiency ratio. In rats fed low protein vitamin A level increased in liver but with an associated decrease in plasma. These changes were reversed in high protein fed state. The amount of protein in diet had little effect on haemoglobin level in erythrocyte, but excess vitamin A in diet significantly decreased haemoglobin level in erythrocyte. Lipid peroxidation (LP) increased in rats fed low protein and decreased in high protein fed rats. Rats fed high protein and excess vitamin A showed minimum level of LP. Result showed that high protein in diet increased the levels of antioxidant enzymes, catalase and superoxide dismutase (SOD) and that excess vitamin A supplementation functions synergistically with high protein in diet to increase antioxidant enzymes level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号