首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   4篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1985年   1篇
  1981年   1篇
  1978年   2篇
  1974年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
Forty loci (16 polymorphic and 24 non-polymorphic) together with 23 cosmids isolated from a chromosome 11-specific library were used to construct a detailed genetic map of 11p13-11g13. The map was constructed by using a panel of 13 somatic cell hybrids that sub-divided this region into 19 intervals, a meiotic mapping panel of 33 multiple endocrine neoplasia type 1 (MEN1) families (134 affected and 269 unaffected members) and a mitotic mapping panel that was used to identify loss of heterozygosity in 38 MENI-associated tumours. The results defined the most likely order of the 16 loci as being: 11pter-D11S871(D11S288, D11S149)-11cen-CNTF-PGA-ROM1-D11S480-PYGM-SEA-D11S913-D115970-D11S97-D11S146-INT2-D11S971-D11S533-11gter. The meiotic mapping studies indicated that the most likely location of the MEN1 gene was in the interval flanked by PYGM and D11S97, and the results of mitotic mapping suggested a possible location of the MEN1 gene telomeric to SEA. Mapping studies of the gene encoding μ-calpain (CAPN1) located CAPN1 to llg13 and in the vicinity of the MEN1 locus. However, mutational analysis studies did not detect any germ-line CAPN1 DNA sequence abnormalities in 47 unrelated MEN1 patients and the results therefore exclude CAPN1 as the MEN1 gene. The detailed genetic map that has been constructed of the 11p13-11g13 region should facilitate the construction of a physical map and the identification of candidate genes for disease loci mapped to this region.  相似文献   
2.
EagI and NotI linking libraries were prepared in the lambda vector, EMBL5, from the mouse-human somatic cell hybrid 1W1LA4.9, which contains human chromosomes 11 and Xp as the only human component. Individual clones containing human DNA were isolated by their ability to hybridise with total human DNA and digested with SalI and EcoRI to identify the human insert size and single-copy fragments. The mean (± SD) insert sizes of the EagI and NotI clones were 18.3 ± 3.2 kb and 16.6 ± 3.6 kb, respectively. Regional localisation of 66 clones (52 EagI, 14 NotI) was achieved using a panel of 20 somatic cell hybrids that contained different overlapping deletions of chromosomes 11 or Xp. Thirty-nine clones (36 EagI, 3 NotI) were localised to chromosome 11; 17 of these were clustered in 11q13 and another nine were clustered in 11q14–q23.1. Twenty-seven clones (16 EagI, 11 NotI) were localised to Xp and 10 of these were clustered in Xp11. The 66 clones were assessed for seven different microsatellite repetitive sequences; restriction fragment length polymorphisms for five clones from 11q13 were also identified. These EagI and NotI clones, which supplement those previously mapped to chromosome 11 and Xp, should facilitate the generation of more detailed maps and the identification of genes that are associated with CpG-rich islands. Received: 27 December 1995 / Revised: 30 January 1996  相似文献   
3.
4.
High‐resolution leaf growth is rarely studied despite its importance as a metric for plant performance and resource use efficiency. This is in part due to methodological challenges. Here, we present a method for in situ leaf growth measurements in a natural environment. We measured instantaneous leaf growth on a mature Avicennia marina subsp. australasica tree over several weeks. We measured leaf expansion by taking time‐lapse images and analysing them using marker tracking software. A custom‐made instrument was designed to enable long‐term field studies. We detected a distinct diel growth pattern with leaf area shrinkage in the morning and leaf expansion in the afternoon and at night. On average, the observed daily shrinkage was 37% of the net growth. Most of the net growth occurred at night. Diel leaf area shrinkage and recovery continued after growth cessation. The amount of daily growth was negatively correlated with shrinkage, and instantaneous leaf growth and shrinkage were correlated with changes in leaf turgor. We conclude that, at least in this tree species, instantaneous leaf growth patterns are very strongly linked to, and most likely driven by, leaf water relations, suggesting decoupling of short‐term growth patterns from carbon assimilation.  相似文献   
5.
Friedreich ataxia (FRDA) is primarily caused by an unstable GAA repeat-expansion mutation within intron 1 of the FRDA gene. However, the exact mechanisms leading to this expansion and its consequences are not fully understood. To study the dynamics of this mutation, we have generated two lines of human FRDA YAC transgenic mice that contain GAA repeat expansions within the appropriate genomic context. We have detected intergenerational instability and age-related somatic instability in both lines, with pronounced expansions found in the cerebellum. The dynamic nature of our transgenic GAA repeats is comparable with previous FRDA patient somatic tissue data. However, there is a difference between our FRDA YAC transgenic mice and other trinucleotide-repeat mouse models, which do not show pronounced repeat instability in the cerebellum. This represents the first mouse model of FRDA GAA repeat instability that will help to dissect the mechanism of this repeat.  相似文献   
6.
Current status of antisense DNA methods in behavioral studies   总被引:4,自引:0,他引:4  
Ogawa  S; Pfaff  DW 《Chemical senses》1998,23(2):249-255
The antisense DNA method has been used successfully to block the expression of specific genes in vivo in neuronal systems. An increasing number of studies in the last few years have shown that antisense DNA administered directly into the brain can modify various kinds of behaviors. These findings strongly suggest that the antisense DNA method can be used as a powerful tool to study causal relationships between molecular processes in the brain and behavior. In this article we review the current status of the antisense method in behavioral studies and discuss its potentials and problems by focusing on the following four aspects; (i) optimal application paradigms of antisense DNA methods in behavioral studies; (ii) efficiencies of different administration methods of antisense DNA used in behavioral studies; (iii) determination of specificity of behavioral effects of antisense DNA; and (iv) discrepancies between antisense DNA effects on behaviors and those on protein levels of the targeted gene.   相似文献   
7.
Friedreich’s ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a GAA repeat expansion mutation within intron 1 of the FXN gene, resulting in reduced levels of frataxin protein. We have previously reported the generation of human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing 90–190 GAA repeats, but the presence of multiple GAA repeats within these mice is considered suboptimal. We now describe the cellular, molecular and behavioural characterisation of a newly developed YAC transgenic FRDA mouse model, designated YG8sR, which we have shown by DNA sequencing to contain a single pure GAA repeat expansion. The founder YG8sR mouse contained 120 GAA repeats but, due to intergenerational expansion, we have now established a colony of YG8sR mice that contain ~200 GAA repeats. We show that YG8sR mice have a single copy of the FXN transgene, which is integrated at a single site as confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We have identified significant behavioural deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8sR FRDA mice compared with control Y47R and wild-type (WT) mice. We have also detected increased somatic GAA repeat instability in the brain and cerebellum of YG8sR mice, together with significantly reduced expression of FXN, FAST-1 and frataxin, and reduced aconitase activity, compared with Y47R mice. Furthermore, we have confirmed the presence of pathological vacuoles within neurons of the dorsal root ganglia (DRG) of YG8sR mice. These novel GAA-repeat-expansion-based YAC transgenic FRDA mice, which exhibit progressive FRDA-like pathology, represent an excellent model for the investigation of FRDA disease mechanisms and therapy.KEY WORDS: GAA repeat, Friedreich’s ataxia, FRDA, YG8sR, Mouse model  相似文献   
8.
Friedreich ataxia (FRDA) is caused by homozygosity for FXN alleles containing an expanded GAA triplet-repeat (GAA-TR) sequence. Patients have progressive neurodegeneration of the dorsal root ganglia (DRG) and in later stages the cerebellum may be involved. The expanded GAA-TR sequence is unstable in somatic cells in vivo, and although the mechanism of instability remains unknown, we hypothesized that age-dependent and tissue-specific somatic instability may be a determinant of the progressive pathology involving DRG and cerebellum. We show that transgenic mice containing the expanded GAA-TR sequence (190 or 82 triplets) in the context of the human FXN locus show tissue-specific and age-dependent somatic instability that is compatible with this hypothesis. Small pool PCR analysis, which allows quantitative analysis of repeat instability by assaying individual transgenes in vivo, showed age-dependent expansions specifically in the cerebellum and DRG. The (GAA)190 allele showed some instability by 2 months, progressed at about 0.3–0.4 triplets per week, resulting in a significant number of expansions by 12 months. Repeat length was found to determine the age of onset of somatic instability, and the rate and magnitude of mutation. Given the low level of cerebellar instability seen by others in multiple transgenic mice with expanded CAG/CTG repeats, our data indicate that somatic instability of the GAA-TR sequence is likely mediated by unique tissue-specific factors. This mouse model will serve as a useful tool to delineate the mechanism(s) of disease-specific somatic instability in FRDA.  相似文献   
9.

Background

A new subgroup of HIV-1, designated Group P, was recently detected in two unrelated patients of Cameroonian origin. HIV-1 Group P phylogenetically clusters with SIVgor suggesting that it is the result of a cross-species transmission from gorillas. Until today, HIV-1 Group P has only been detected in two patients, and its degree of adaptation to the human host is largely unknown. Previous data have shown that pandemic HIV-1 Group M, but not non-pandemic Group O or rare Group N viruses, efficiently antagonize the human orthologue of the restriction factor tetherin (BST-2, HM1.24, CD317) suggesting that primate lentiviruses may have to gain anti-tetherin activity for efficient spread in the human population. Thus far, three SIV/HIV gene products (vpu, nef and env) are known to have the potential to counteract primate tetherin proteins, often in a species-specific manner. Here, we examined how long Group P may have been circulating in humans and determined its capability to antagonize human tetherin as an indicator of adaptation to humans.

Results

Our data suggest that HIV-1 Group P entered the human population between 1845 and 1989. Vpu, Env and Nef proteins from both Group P viruses failed to counteract human or gorilla tetherin to promote efficient release of HIV-1 virions, although both Group P Nef proteins moderately downmodulated gorilla tetherin from the cell surface. Notably, Vpu, Env and Nef alleles from the two HIV-1 P strains were all able to reduce CD4 cell surface expression.

Conclusions

Our analyses of the two reported HIV-1 Group P viruses suggest that zoonosis occurred in the last 170 years and further support that pandemic HIV-1 Group M strains are better adapted to humans than non-pandemic or rare Group O, N and P viruses. The inability to antagonize human tetherin may potentially explain the limited spread of HIV-1 Group P in the human population.  相似文献   
10.
Even though molecular clocks vary in rate to some extent, they are widely used and very important in a range of evolutionary studies, not least in interpreting cause and colonization in phylogeography. Evolutionists may use island age and emergence to give the earliest possible date for colonization by a species and hence give the lower limit in a molecular clock calibration. The geology of the Lesser Antilles is well studied and Barbados, although composed of some ancient rocks, is thought to have emerged only about 1 million years ago (Ma). The cytochrome b mitochondrial gene is the most widely used gene in vertebrate phylogeography, and generally evolves at a rate of 1-2% per million years (Myr) for poikilothermic vertebrates. Divergence measured across almost all of this gene in the endemic anole (Anolis extremus) reveals a mean patristic distance of approximately 8.3% between this clade and its sister, together with distinct divergence and phylogeographical structure within Barbados. The divergence time, estimated by a range of procedures using four calibration points, is not in the least compatible with the proposed geological time of emergence of Barbados. Hence, either the molecular clock rate does not apply to the Barbadian anole population, or the geological dating of the emergence of Barbados is erroneous. The compatibility of geological times and molecular divergence of this complex on Martinique, together with relative rates tests comparing the rates on Barbados and Martinique, do not suggest atypical clock rates. The question of whether Barbados emerged much earlier than is currently thought, or whether the molecular clock assumptions are inappropriate, remains open.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号