首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   4篇
  58篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   1篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   3篇
  2005年   4篇
  2004年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1981年   1篇
  1980年   1篇
  1954年   1篇
排序方式: 共有58条查询结果,搜索用时 0 毫秒
1.
Pseudomonas MA3 was isolated from activated sludge on the basis of its capacity to use dodecyldimethylamine as a sole carbon (C) and energy source. Dodecylamine, dodecanal, dodecanoic acid and acetic acid also supported growth of Pseudomonas MA3. Dodecyldimethylamine-grown cells oxidized a wide range of alkylamine derivatives, dodecanal, dodecanoic acid and acetic acid. Degradation of the alkyl chain of dodecyldimethylamine by Pseudomonas MA3 appeared from the stoichiometric liberation of dimethylamine. A dehydrogenase catalysed the cleavage of the Calkyl-N bond. The first intermediate of the proposed degradation pathway, dodecanal, accumulated in the presence of decanal used as a competitive inhibitor. The second intermediate,dodecanoic acid, was formed in the presence of acrylic acid during the degradation of dodecyldimethylamine. Dodecanal was converted into dodecanoic acid by a dehydrogenase and dodecanoic acid was then degraded via the oxidation pathway.  相似文献   
2.
3.
Imaging of glutamate carboxypeptidase II (GCP II), also known as N-acetylated alpha-linked L-amino dipeptidase (NAALADase), may enable study of glutamatergic transmission, prostate cancer, and tumor neovasculature in vivo. Our goal was to develop a probe for GCP II for use with positron emission tomography (PET). Radiosynthesis of 11C-MeCys-C(O)-Glu or 11C-(S)-2-[3-((R)-1-carboxy-2-methylsulfanyl-ethyl)-ureido]-pentanedioic acid (11C-MCG), an asymmetric urea and potent (Ki = 1.9 nM) inhibitor of GCP II, was performed by C-11 methylation of the free thiol. Biodistribution of 11C-MCG was assayed in mice, and quantitative PET was performed in a baboon. 11C-MCG was obtained in 16% radiochemical yield at the end of synthesis with specific radioactivities over 167 GBq/mmol (4000 Ci/mmol) within 30 min after the end of bombardment. At 30 min postinjection, 11C-MCG showed 33.0 +/- 5.1%, 0.4 +/- 0.1%, and 1.1 +/- 0.2% ID/g in mouse kidney (target tissue), muscle, and blood, respectively. Little radioactivity gained access to the brain. Blockade with unlabeled MCG or 2-(phosphonomethyl)pentanedioic acid (PMPA), another potent inhibitor of GCP II, provided sevenfold and threefold reductions, respectively, in binding to target tissue. For PET, distribution volumes (DVs) were 1.38 then 0.87 pre- and postblocker (PMPA). Little metabolism of 11C-MCG occurred in the mouse or baboon. These results suggest that 11C-MCG may be useful for imaging GCP II in the periphery.  相似文献   
4.
Radioisotopes that emit electrons (beta particles), such as radioiodine, can effectively kill target cells, including cancer cells. Aqueous 32P[PO4] is a pure beta-emitter that has been used for several decades to treat non-malignant human myeloproliferative diseases. 32P[PO4] was directly compared to a more powerful pure beta-emitter, the clinically important 90Y isotope. In vitro, 32P[PO4] was more effective at killing cells than was the more powerful isotope 90Y (P ≤ 0.001) and also caused substantially more double-stranded DNA breaks than did 90Y. In vivo, a single low-dose intravenous dose of aqueous elemental 32P significantly inhibited tumor growth in the syngeneic murine cancer model (P ≤ 0.001). This effect is exerted by direct incorporation into nascent DNA chains, resulting in double-stranded breakage, a unique mechanism not duplicatable by other, more powerful electron-emitting radioisotopes. 32P[PO4] should be considered for human clinical trials as a potential novel anti-cancer drug.  相似文献   
5.
Global expression profiling of pancreatic cancers has identified two cell surface molecules, claudin 4 and prostate stem cell antigen (PSCA), as being overexpressed in the vast majority of cases. Two antibodies, anti-claudin 4 and anti-PSCA, were radiolabeled with iodine 125 ((125)I) for imaging pancreatic cancer xenografts in mice using gamma scintigraphy and single-photon emission computed tomography-computed tomography (SPECT-CT). Immunofluorescence staining of intact and permeabilized Colo357 human pancreatic cancer cells showed strong extracellular staining by both anti-PSCA and anti-claudin 4. Biodistribution studies in claudin 4 and PSCA-expressing Colo357 and PANC-1 subcutaneous xenograft models in mice showed that [(125)I]anti-claudin 4 tumor to muscle ratio uptake was 4.3 in Colo357 at 6 days postinjection and 6.3 in PANC-1 xenografts at 4 days postinjection. Biodistribution of [(125)I]anti-PSCA showed tumor to muscle ratio uptake of 4.9 in Colo357 at 6 days postinjection. Planar gamma scintigraphic imaging in Colo357 xenograft-bearing mice showed clear tumor uptake of [(125)I]anti-claudin 4 by 24 hours postinjection and by 48 hours postinjection for [(125)I]anti-PSCA. SPECT-CT imaging with [(125)I]anti-claudin 4 and [(125)I]anti-PSCA in an L3.6PL orthotopic xenograft model showed strong tumor and spleen uptake at 5 days postinjection. Both anti-claudin 4 and anti-PSCA demonstrate promise as radiodiagnostic and possibly radiotherapeutic agents for human pancreatic cancers.  相似文献   
6.
7.
Glutamate carboxypeptidase II (GCPII) is an important target for therapeutic and diagnostic interventions aimed at prostate cancer and neurologic disorders. Here we describe the development and optimization of a high-throughput screening (HTS) assay based on fluorescence polarization (FP) that facilitates the identification of novel scaffolds inhibiting GCPII. First, we designed and synthesized a fluorescence probe based on a urea-based inhibitory scaffold covalently linked to a Bodipy TMR fluorophore (TMRGlu). Next, we established and optimized conditions suitable for HTS and evaluated the assay robustness by testing the influence of a variety of physicochemical parameters (e.g., pH, temperature, time) and additives. Using known GCPII inhibitors, the FP assay was shown to be comparable to benchmark assays established in the field. Finally, we evaluated the FP assay by HTS of a 20 000-compound library. The novel assay presented here is robust, highly reproducible (Z' = 0.82), inexpensive, and suitable for automation, thus providing an excellent platform for HTS of small-molecule libraries targeting GCPII.  相似文献   
8.
Ovarian cancer is the leading cause of death from all gynecological cancers and conventional therapies such as surgery, chemotherapy, and radiotherapy usually fail to control advanced stages of the disease. Thus, there is an urgent need for alternative and innovative therapeutic options. We reason that cancer gene therapy using a vector capable of specifically delivering an enzyme-encoding gene to ovarian cancer cells will allow the cancer cell to metabolize a harmless prodrug into a potent cytotoxin, which will lead to therapeutic effects. In the current study, we explore the use of a human papillomavirus (HPV) pseudovirion to deliver a herpes simplex virus thymidine kinase (HSV-tk) gene to ovarian tumor cells. We found that the HPV-16 pseudovirion was able to preferentially infect murine and human ovarian tumor cells when administered intraperitoneally. Furthermore, intraperitoneal injection of HPV-16 pseudovirions carrying the HSV-tk gene followed by treatment with ganciclovir led to significant therapeutic anti-tumor effects in murine ovarian cancer-bearing mice. Our data suggest that HPV pseudovirion may serve as a potential delivery vehicle for ovarian cancer gene therapy.  相似文献   
9.
An overview of the basic principles of photochemistry is presented to facilitate discussion of fluorescence, quenching and quantum yields. These topics in turn provide the foundation for an account of fluorescence spectroscopy and its application to microscopy. A brief overview of light microscopy and the application of fluorescence microscopy is given. The influences of molecular features, such as aromatic character and substitution patterns, on color and fluorescence are described. The concept of color fading is considered with particular reference to its effect on microscopic preparations. A survey of representative fluorescent probes is provided, and their sensitivity, application, and limitations are described. The phototoxicity of fluorescent molecules is discussed using biomembranes and DNA as examples of targets of toxicity. Photodynamic therapy, a relatively new clinical application of phototoxicity, is described. Both anticancer and antimicrobial applications are noted, and an assessment is given of the current ideas on the ideal physicochemical properties of the sensitizing agents for such applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号