首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   7篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   13篇
  2012年   3篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   7篇
  2006年   10篇
  2005年   8篇
  2004年   5篇
  2003年   9篇
  2002年   6篇
  2001年   7篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有121条查询结果,搜索用时 31 毫秒
1.
The synthesis of the tridecadeoxynucleotide d(CGm5CGCGxACATGT), where x is the 1-cyano-2-deoxy-beta-D-erythropentofuranose, is described. The NMR, IR, CD studies at various salt concentrations and temperatures of this oligomer show that the B and Z conformations are simultaneously present in the same short DNA fragment. A single apurinic residue is sufficient for the coexistence of the B and Z helices on this oligomer.  相似文献   
2.
The validity of 5′-nucleotidase as a plasma membrane marker enzyme in beef thyroid has been tested by comparing the subcellular distribution of its activity to that of (Na+K+)-activated ATPase and adenyl cyclase. The specific activity and total activity of (Na+K+)-ATPase and adenyl cyclase were greatest in the 1000 × g (“nuclear”) and 33 000 × g (“mitochondrial and lysosomal”) fractions. In contrast, 5′-nucleotidase activity was concentrated in the 165 000 × g (“microsomal”) pellet and supernatant. Partially purified plasma membranes were separated from the 1000 (N2), 30 000 (M2) and 165 000 × g (P2) pellets by discontinuous sucrose gradient centrifugation. Again a discordant distribution of these enzyme activities was observed. (Na+K+)-ATPase specific activity was increased approximately 30-fold over the homogenate in Fractions N2 and M2. Basal, thyroid-stimulating hormone-and fluoride-stimulated adenyl cyclase activities were concentrated in the same fractions. 5′-Nucleotidase activity was preferentially located in M2 and P2. These differences in distribution pattern suggest that 5′-nucleotidase activity is not uniquely located in the plasma membrane in the thyroid.  相似文献   
3.
Abstract

The use of 5′-triphosphate of 1-(2-deoxy-β-D-ribofuranosyl)imidazole-4-carboxamide (dYTP) in DNA amplification reaction in place of dATP or dGTP yielded mutations frequencies of 3–4×10?2 per base per amplification. A reasonable proportion of transversions (11–15%) was observed in the absence of deletions and insertions.  相似文献   
4.
The gene dnph1 (or rcl) encodes a hydrolase that cleaves the 2’-deoxyribonucleoside 5’-monophosphate (dNMP) N-glycosidic bond to yield a free nucleobase and 2-deoxyribose 5-phosphate. Recently, the crystal structure of rat DNPH1, a potential target for anti-cancer therapies, suggested that various analogs of AMP may inhibit this enzyme. From this result, we asked whether N 6-substituted AMPs, and among them, cytotoxic cytokinin riboside 5’-monophosphates, may inhibit DNPH1. Here, we characterized the structural and thermodynamic aspects of the interactions of these various analogs with DNPH1. Our results indicate that DNPH1 is inhibited by cytotoxic cytokinins at concentrations that inhibit cell growth.  相似文献   
5.
6.
7.
The expression levels of seven different S100 proteins (S100A1, S100A2, S100A3, S100A4, S100A5, S100A6, and S100B) were characterized by immunohistochemistry in the epithelial versus connective tissues of a series of 35 colon specimens, including 6 normal samples, 5 adenomas with low-grade dysplasia, 5 adenomas with high-grade dysplasia, and 19 cancers. The results showed that S100A2, S100A3, and S100B proteins could not (or only marginally) be detected in colon tissues. On the other hand, the expression of S100A6 increased in epithelial tissues directly proportional to the increase of malignancy. The percentage of epithelial (or connective tissue) cells expressing S100A4 significantly decreased as the malignancy grade increased. The expression level of S100A1 proteins was somewhat higher in the connective tissues of normal cases and adenomas with low-grade dysplasia than in adenomas with high-grade dysplasia and cancers. This pattern of expression was not observed in epithelial tissues. While the node-positive cancers did not express S100A1, about half of the node-negative specimens did. The expression levels of S100A5 were similar in different epithelial tissues. However, in the connective tissues the expression levels decreased inversely proportional to the increase in pathological grading of the specimens. Therefore, the present study implicates several S100 proteins as useful tools for histochemical typing of colon cancer malignancy development.  相似文献   
8.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by selective degeneration of motoneurones. Familial ALS is an age-dependent autosomal dominant disorder in which mutations in the homodimeric enzyme Cu/Zn superoxide dismutase 1 (SOD1) is linked to the disease. An animal model for this disease is a transgenic mouse expressing the mutated human SOD1(G93A) gene. Recent electrophysiological data emphasised that the striking selective vulnerability of motoneurones might be due to their differential calcium buffering capacities. Therefore we have investigated, using immunohistochemistry, the expression of different calcium binding proteins in brainstem and spinal cord from normal and SOD1 mutated mice. Among the 13 calcium-binding proteins screened, only one, S100A6, a homodimeric calcium-binding protein able to bind four Zn(2+), appeared to be highly expressed in the SOD1 mutated mice. In brainstem, reactive astrocytes, but not motoneurones, from several regions, including nerve 12 root, were highly S100A6-positive. Hypoglossal nucleus was negative for S100A6. In dorsal root, reactive astrocytes from both white matter and anterior horn were highly reactive. If overexpression of S100A6 is specific for ALS, it will be a valuable diagnostic marker for this disease.  相似文献   
9.
10.
The response to ATP of peritoneal macrophages from wild-type (WT) and P2X7-invalidated (KO) mice was tested. Low concentrations (1–100 μM) of ATP transiently increased the intracellular concentration of calcium ([Ca2+]i) in cells from both mice. The inhibition of the polyphosphoinositide-specific phospholipase C with U73122 inhibited this response especially in WT mice suggesting that the responses coupled to P2Y receptors were potentiated by the expression of P2X7 receptors. One millimolar ATP provoked a sustained increase in the [Ca2+]i only in WT mice. The response to 10 μM ATP was potentiated and prolonged by ivermectin in both mice. One millimolar ATP increased the influx of extracellular calcium, decreased the intracellular concentration of potassium ([K+]i) and stimulated the secretion of interleukin-1β (IL-1β) only in cells from WT mice. Ten micromolar ATP in combination with 3 μM ivermectin reproduced these responses both in WT and KO mice. The secretion of IL-1β was also increased by nigericin in WT mice and the secretory effect of a combination of ivermectin with ATP in KO mice was suppressed in a medium containing a high concentration of potassium. In WT mice, 150 μM BzATP stimulated the uptake of YOPRO-1. Incubation of macrophages from WT and KO mice with 10 μM ATP resulted in a small increase of YOPRO-1 uptake, which was potentiated by addition of 3 μM ivermectin. The uptake of this dye was unaffected by pannexin-1 blockers. In conclusion, prolonged stimulation of P2X4 receptors by a combination of low concentrations of ATP plus ivermectin produced a sustained activation of the non-selective cation channel coupled to this receptor. The ensuing variations of the [K+]i triggered the secretion of IL-1β. Pore formation was also triggered by activation of P2X4 receptors. Higher concentrations of ATP elicited similar responses after binding to P2X7 receptors. The expression of the P2X7 receptors was also coupled to a better response to P2Y receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号