首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Rat granulosa cells (GCs) were treated with human chorionic gonadotropin (hCG), 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP), forskolin, phorbol 12-myristate 13-acetate (PMA), A23187 or pregnenolone in the absence or presence of hydrogen peroxide (H(2)O(2)). Different doses of trilostane were applied to GCs treated with steroidogenic precursors, that is, 25-hydroxy-cholesterol (25-OH-C) in the absence or presence of H(2)O(2). Results showed that all of the chemicals stimulated the progesterone (PG) release from rat GCs, but the stimulatory effects were inhibited by H(2)O(2) dose-dependently. 25-OH-C stimulated the PG release, which was inhibited by H(2)O(2) in the presence of trilostane. H(2)O(2) attenuated steroidogenic acute regulatory (StAR) protein expression, but did not alter the expression of cytochrome P450 side chain cleavage (P450scc) in Western blotting. This study indicated that H(2)O(2) inhibited PG production by GCs via cAMP pathway, protein kinase C (PKC) and the activities of intracellular calcium, P450scc and StAR protein.  相似文献   
2.
Finger joint coordination during tapping   总被引:1,自引:0,他引:1  
We investigated finger joint coordination during tapping by characterizing joint kinematics and torques in terms of muscle activation patterns and energy profiles. Six subjects tapped with their index finger on a computer keyswitch as if they were typing on the middle row of a keyboard. Fingertip force, keyswitch position, kinematics of the metacarpophalangeal (MCP) and the proximal and distal interphalangeal (IP) joints, and intramuscular electromyography of intrinsic and extrinsic finger muscles were measured simultaneously. Finger joint torques were calculated based on a closed-form Newton–Euler inverse dynamic model of the finger. During the keystroke, the MCP joint flexed and the IP joints extended before and throughout the loading phase of the contact period, creating a closing reciprocal motion of the finger joints. As the finger lifted, the MCP joint extended and the interphalangeal (IP) joints flexed, creating an opening reciprocal motion. Intrinsic finger muscle and extrinsic flexor activities both began after the initiation of the downward finger movement. The intrinsic finger muscle activity preceded both the IP joint extension and the onset of extrinsic muscle activity. Only extrinsic extensor activity was present as the finger was lifted. While both potential energy and kinetic energy are present and large enough to overcome the work necessary to press the keyswitch, the motor control strategies utilize the muscle forces and joint torques to ensure a successful keystroke.  相似文献   
3.
Avian-origin influenza A (H7N9) viruses emerged as human pathogens in China in early 2013 and have killed >100 persons. Influenza vaccines are mainly manufactured using egg-based technology which could not meet the surging demand during influenza pandemics. In this study, we evaluated cell-based influenza H7N9 vaccines in ferrets. An egg-derived influenza H7N9 reassortant vaccine virus was adapted in MDCK cells. Influenza H7N9 whole virus vaccine antigen was manufactured using a microcarrier-based culture system. Immunogenicity and protection of the vaccine candidates with three different formulations (300μg aluminum hydroxide, 1.5μg HA, and 1.5μg HA plus 300μg aluminum hydroxide) were evaluated in ferrets. In ferrets receiving two doses of vaccination, geometric mean titers of hemagglutination (HA) inhibition and neutralizing antibodies were <10 and <40 for the control group (adjuvant only), 17 and 80 for the unadjuvanted (HA only) group, and 190 and 640 for the adjuvanted group (HA plus adjuvant), respectively. After challenge with wild-type influenza H7N9 viruses, virus titers in respiratory tracts of the adjuvanted group were significantly lower than that in the control, and unadjuvanted groups. MDCK cell-derived influenza H7N9 whole virus vaccine candidate is immunogenic and protective in ferrets and clinical development is highly warranted.  相似文献   
4.
This study examined the effect of computer keyboard keyswitch design on muscle activity patterns during finger tapping. In a repeated-measures laboratory experiment, six participants tapped with their index fingers on five isolated keyswitch designs with varying force–displacement characteristics that provided pairwise comparisons for the design factors of (1) activation force (0.31 N vs. 0.59 N; 0.55 N vs. 0.93 N), (2) key travel (2.5 mm vs. 3.5 mm), and (3) shape of the force–displacement curve as realized through buckling-spring vs. rubber-dome switch designs. A load cell underneath the keyswitch measured vertical fingertip forces, and intramuscular fine wire EMG electrodes measured muscle activity patterns of two intrinsic (first lumbricalis, first dorsal interossei) and three extrinsic (flexor digitorum superficialis, flexor digitorum profundus, and extensor digitorum communis) index finger muscles. The amplitude of muscle activity for the first dorsal interossei increased 25.9% with larger activation forces, but not for the extrinsic muscles. The amplitude of muscle activity for the first lumbricalis and the duration of muscle activities for the first dorsal interossei and both extrinsic flexor muscles decreased up to 40.4% with longer key travel. The amplitude of muscle activity in the first dorsal interossei increased 36.6% and the duration of muscle activity for all muscles, except flexor digitorum profundus, decreased up to 49.1% with the buckling-spring design relative to the rubber-dome design. These findings suggest that simply changing the force–displacement characteristics of a keyswitch changes the dynamic loading of the muscles, especially in the intrinsic muscles, during keyboard work.  相似文献   
5.
We investigated the effects of nonylphenol (NP) on release of progesterone (PG) by granulosa cells (GCs) of rats in vitro and in vivo. First, GCs were treated with different doses of NP for 2-24 h alone or with human chorionic gonadotropin (hCG). Maximal PG secretion at 8 h noted, GCs were treated for 2 h with hCG, 8-bromo-adenosine 3':5'-cyclic monophosphate (8-Br-cAMP), forskolin, A23187, nifedipine, and pregnelonone to evaluate the NP effects on PG steroidogenesis. Results indicated that all of chemicals except nifedipine stimulated the PG release compared to vehicle, but the stimulatory effects could not be enhanced by different doses of NP. Second, GCs were isolated to react with hCG, 8-Br-cAMP and PD98059 after the immature female rats gavaged with different doses of NP (ONP) for 7 days. PG released significantly when rats treated with oral NP 100 compared to 0 μg/kg/day. Third, GCs collected from the female offspring of mother rats which gavaged with NP 100 μg/kg/day for 21 days during pregnancy (MONP) reacted with different doses of chemicals. The results showed that PG release in the presence of chemicals was significantly higher in ONP and MONP groups; however, this stimulation was not noted by dose-dependent. The plasma concentration of PG was higher in ONP (100 μg/kg/day) and the offspring of MONP groups. The steroidogenic acute regulatory (StAR) protein expressed higher in all three groups by Western blotting. This study results indicated that low dose of NP stimulated PG release in rat GCs by activation of StAR protein.  相似文献   
6.
The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号