首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   10篇
  106篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   5篇
  1999年   2篇
  1998年   5篇
  1996年   3篇
  1994年   2篇
  1993年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1968年   1篇
  1907年   1篇
  1905年   1篇
  1904年   1篇
  1892年   1篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
1.
2.
In the present study, we used osteoprotegerin (OPG), which blocks osteoclastogenesis, to correct and thus explain the hypercalcemia that is seen during dietary Mg deficiency in the mouse. Control and Mg-deficient mice received injections for 12 days of either OPG or vehicle only. Serum Ca was similar in Mg-deficient mice treated with OPG and in control mice receiving OPG (9.2±0.3 mg/dl vs. 9.2±0.5). Both groups had significantly higher serum Ca than controls or Mg-deficient animals receiving vehicle alone. Surprisingly, Mg-depleted mice that received OPG in doses that inhibit osteoclastic bone resorption remained hypercalcemic. Because mature osteoclasts still present in the marrow might be hyperactive, we examined osteoclast morphology at the light microscopic and ultrastructural level. Light microscopic examination of trabecular bone showed few osteoclasts in OPG-treated mice. Ultrastructural examination revealed that osteoclasts in OPG-treated mice have decreased contact with the endosteal bone surface and absence of a ruffled border. Because the morphology of the existing pool of mature osteoclasts did not enhance resorption, another mechanism, such as increased intestinal absorption of Ca in Mg-deficient mice, likely contributes to the hypercalcemia observed during Mg deficiency.  相似文献   
3.
Pakistan, the second most populous Muslim nation in the world, has started to finally experience and confront the HIV/AIDS epidemic. The country had been relatively safe from any indigenous HIV cases for around two decades, with most of the infections being attributable to deported HIV positive migrants from the Gulf States. However, the virus finally seems to have found a home-base, as evidenced by the recent HIV outbreaks among the injection drug user community. Extremely high-risk behavior has also been documented among Hijras (sex workers) and long-distance truck drivers. The weak government response coupled with the extremely distressing social demographics of this South-Asian republic also helps to compound the problem. The time is ripe now to prepare in advance, to take the appropriate measures to curtail further spread of the disease. If this opportunity is not utilized right now, little if at all could be done later.  相似文献   
4.
The deer ked (Lipoptena cervi) is an ectoparasitic fly on cervids that has expanded its distribution rapidly in Northern Europe. However, the regulating biotic factors such as predation remain unknown. The host‐independent pupal stage of the fly lasts for several months. Blackish pupae are visible against snow, especially on the bedding sites of hosts, and are thus exposed to predators. To evaluate the role of predation on the invasion dynamics and evolution of L. cervi, we monitored pupal predation on artificial bedding sites in three geographical areas in Finland during winter. We explored: (1) possible predators; (2) magnitude of predation; and (3) whether predation risk is affected by host‐derived cues. We demonstrate that pupae are predated by a number of tit species. Any reddish brown snow discoloration on bedding sites, indicating heavy infestation of the host, serves as an exploitable cue for avian predators, thereby increasing the risk of pupal predation. The ability of tits to use this host‐derived cue seems to be dependent on the prevalence of L. cervi and the period of invasion history, which suggests that it may be a learned behavioural response. Predation by tits may potentially affect the L. cervi population dynamics locally. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 275–286.  相似文献   
5.
Summary Pollen carryover was measured in three species of bumble bee pollinated plants by counting the numbers of foreign grains applied to the stigmas of a series of flowers by bumble bees. Deposition declined with the number of flowers visited in a roughly exponential fashion; most grains were deposited on the first few flowers, but some grains went much farther, the maximum carryover being 54 flowers. Variation in deposition was very high. In Diervilla lonicera, bees desposited significantly more grains on flowers which contained large amounts of nectar than on drained flowers. The implications are discussed in terms of plant strategies for optimizing pollination.  相似文献   
6.
Fruit bats (Pteropodidae) have received increased attention after the recent emergence of notable viral pathogens of bat origin. Their vagility hinders data collection on abundance and distribution, which constrains modeling efforts and our understanding of bat ecology, viral dynamics, and spillover. We addressed this knowledge gap with models and data on the occurrence and abundance of nectarivorous fruit bat populations at 3 day roosts in southeast Queensland. We used environmental drivers of nectar production as predictors and explored relationships between bat abundance and virus spillover. Specifically, we developed several novel modeling tools motivated by complexities of fruit bat foraging ecology, including: (1) a dataset of spatial variables comprising Eucalypt‐focused vegetation indices, cumulative precipitation, and temperature anomaly; (2) an algorithm that associated bat population response with spatial covariates in a spatially and temporally relevant way given our current understanding of bat foraging behavior; and (3) a thorough statistical learning approach to finding optimal covariate combinations. We identified covariates that classify fruit bat occupancy at each of our three study roosts with 86–93% accuracy. Negative binomial models explained 43–53% of the variation in observed abundance across roosts. Our models suggest that spatiotemporal heterogeneity in Eucalypt‐based food resources could drive at least 50% of bat population behavior at the landscape scale. We found that 13 spillover events were observed within the foraging range of our study roosts, and they occurred during times when models predicted low population abundance. Our results suggest that, in southeast Queensland, spillover may not be driven by large aggregations of fruit bats attracted by nectar‐based resources, but rather by behavior of smaller resident subpopulations. Our models and data integrated remote sensing and statistical learning to make inferences on bat ecology and disease dynamics. This work provides a foundation for further studies on landscape‐scale population movement and spatiotemporal disease dynamics.  相似文献   
7.
8.
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.  相似文献   
9.
Infectious disease ecology has recently raised its public profile beyond the scientific community due to the major threats that wildlife infections pose to biological conservation, animal welfare, human health and food security. As we start unravelling the full extent of emerging infectious diseases, there is an urgent need to facilitate multidisciplinary research in this area. Even though research in ecology has always had a strong theoretical component, cultural and technical hurdles often hamper direct collaboration between theoreticians and empiricists. Building upon our collective experience of multidisciplinary research and teaching in this area, we propose practical guidelines to help with effective integration among mathematical modelling, fieldwork and laboratory work. Modelling tools can be used at all steps of a field-based research programme, from the formulation of working hypotheses to field study design and data analysis. We illustrate our model-guided fieldwork framework with two case studies we have been conducting on wildlife infectious diseases: plague transmission in prairie dogs and lyssavirus dynamics in American and African bats. These demonstrate that mechanistic models, if properly integrated in research programmes, can provide a framework for holistic approaches to complex biological systems.  相似文献   
10.
The natural habitats of microbes are typically spatially structured with limited resources, so opportunities for unconstrained, balanced growth are rare. In these habitats, selection should favor microbes that are able to use resources most efficiently, that is, microbes that produce the most progeny per unit of resource consumed. On the basis of this assertion, we propose that selection for efficiency is a primary driver of the composition of microbial communities. In this article, we review how the quality and quantity of resources influence the efficiency of heterotrophic growth. A conceptual model proposing innate differences in growth efficiency between oligotrophic and copiotrophic microbes is also provided. We conclude that elucidation of the mechanisms underlying efficient growth will enhance our understanding of the selective pressures shaping microbes and will improve our capacity to manage microbial communities effectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号