首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
  国内免费   1篇
  2014年   2篇
  2008年   3篇
  2006年   1篇
  2002年   1篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
Calcofluor White is a fluorescent probe that interacts with polysaccharides and is commonly used in clinical studies. Interaction between Calcofluor White and carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) was previously followed by fluorescence titration of the Trp residues of the protein. A stoichiometry of one Calcofluor for one protein has been found [J.R. Albani and Y.D. Plancke, Carbohydr. Res., 318 (1999) 193-200]. Alpha1-acid glycoprotein contains 40% carbohydrate by weight and has up to 16 sialic acid residues. Since binding of Calcofluor to alpha1-acid glycoprotein occurs mainly on the carbohydrate residues, we studied in the present work the interaction between Calcofluor and the protein by following the fluorescence change of the fluorophore. In order to establish the role of the sialic acid residues in the interaction, the experiments were performed with the sialylated and asialylated protein. Interaction of Calcofluor with sialylated alpha1-acid glycoprotein induces a red shift of the emission maximum of the fluorophore from 438 to 450 nm at saturation (one Calcofluor for one sialic acid) and an increase in the fluorescence intensity. At saturation the fluorescence intensity increase levels off. Binding of Calcofluor to asialylated acid glycoprotein does not change the position of the emission maximum of the fluorophore and induces a decrease in its fluorescence intensity. Saturation occurs when 10 molecules of Calcofluor are bound to 1 mol of alpha1-acid glycoprotein. Since the protein contains five heteropolysaccharide groups, we have 2 mol of Calcofluor for each group. Addition of free sialic acid to Calcofluor induces a continuous decrease in the fluorescence intensity of the fluorophore but does not change the position of the emission maximum. Our results confirm the presence of a defined spatial conformation of the sialic acid residues, a conformation that disappears when they are free in solution. Dynamics studies on Calcofluor White and the carbohydrate residues of alpha1-acid glycoprotein are also performed at saturating concentrations of Calcofluor using the red-edge excitation spectra and steady-state anisotropy studies. The red-edge excitation spectra experiments show an important shift (13 nm) of the fluorescence emission maximum of the probe. This reveals that emission of Calcofluor occurs before relaxation of the surrounding carbohydrate residues occurs. Emission from a non-relaxed state means that the microenvironment of bound Calcofluor is rigid, inducing in this way the rigidity of the fluorophore itself, a result confirmed by anisotropy studies.  相似文献   
2.
Interactions between the fluorescent probe, calcofluor white, and human serum albumin (HSA) and alpha 1-acid glycoprotein (orosomucoid) are compared. The two proteins have comparable isoelectric points, but alpha 1-acid glycoprotein is highly glycosylated (40% of glycans by weight), while the serum albumin is not. Binding of calcofluor to the proteins induces an increase in both the fluorescence anisotropy and the fluorescence intensity of the fluorophore. Also, we found that the calcofluor exhibits a fluorescence emission with a maximum located at 432, 415 or 445 nm, respectively, in the absence of proteins, in the presence of HSA, and in the presence of alpha 1-acid glycoprotein. The stoichiometries of the calcofluor-serum albumin and calcofluor-alpha 1-acid glycoprotein complexes are 2:1 and 1:1, respectively. The association constants are 0.04 and 0.15 microM-1, respectively. The calcofluor does not interact with Lens culinaris agglutinin (LCA), although the protein has a hydrophobic site. Nevertheless, one cannot exclude that the binding of the fluorophore to the HSA is nonspecific. Our results, when compared with those obtained with calcofluor dissolved in the hydrophobic solvent isobutanol, and with the fluorescent probe, potassium 6-(p-toluidino)-2-naphthalenesulfonate (TNS), bound to alpha 1-acid glycoprotein, indicate that the emission of calcofluor bound to HSA occurs from a hydrophobic state, while that of calcofluor bound to alpha 1-acid glycoprotein occurs from a hydrophilic state. The fluorescence intensity of calcofluor decreases in the presence of carbohydrates isolated from alpha 1-acid glycoprotein, while it increases in the presence of alpha 1-cellulose. Thus, calcofluor interacts mainly with the glycan moiety of alpha 1-acid glycoprotein, and its fluorescence is sensitive to the secondary structure of the glycans.  相似文献   
3.
The carbohydrate chains of the mucins which constitute the jelly coat surrounding the eggs of Rana temporaria were released by alkaline borohydride treatment. Neutral and acidic oligosaccharide-alditols were purified by ion-exchange chromatography and HPLC. From the structural analysis, based upon 1H and 13C-NMR spectroscopy in combination with MALDI-TOF, the following glycan units are proposed. Abbreviations: MALDI-TOF, matrix assisted laser desorption ionization - time of flight; HPLC, high performance liquid chromatography; COSY, correlation spectroscopy; HSQC, heteronuclear single-quantum coherence spectroscopy; HMQC, heteronuclear multiple-quantum coherence spectroscopy; ROESY, rotating-frame overhauser enhancement spectroscopy; Fuc, fucose; Gal, galactose; GlcNAc, N-acetylglucosamine; GalNAc, N-acetylgalactosamine; GalNAc-ol, N-acetylgalactosaminitol; GlcA, glucuronic acid  相似文献   
4.
5.
Metabolic symbiosis and the birth of the plant kingdom   总被引:2,自引:0,他引:2  
Eukaryotic cells are composed of a variety of membrane-bound organelles that are thought to derive from symbiotic associations involving bacteria, archaea, or other eukaryotes. In addition to acquiring the plastid, all Archaeplastida and some of their endosymbiotic derivatives can be distinguished from other organisms by the fact that they accumulate starch, a semicrystalline-storage polysaccharide distantly related to glycogen and never found elsewhere. We now provide the first evidence for the existence of starch in a particular species of single-cell diazotrophic cyanobacterium. We provide evidence for the existence in the eukaryotic host cell at the time of primary endosymbiosis of an uridine diphosphoglucose (UDP-glucose)-based pathway similar to that characterized in amoebas. Because of the monophyletic origin of plants, we can define the genetic makeup of the Archaeplastida ancestor with respect to storage polysaccharide metabolism. The most likely enzyme-partitioning scenario between the plastid's ancestor and its eukaryotic host immediately suggests the precise nature of the ancient metabolic symbiotic relationship. The latter consisted in the export of adenosine diphosphoglucose (ADP-glucose) from the cyanobiont in exchange for the import of reduced nitrogen from the host. We further speculate that the monophyletic origin of plastids may lie in an organism with close relatedness to present-day group V cyanobacteria.  相似文献   
6.
In rural Punu society, song‐dance performances of rejoicing are deeply connected with forces of regeneration; they not only celebrate the sexual encounter but also, in their constituent dynamic, aim progressively to awaken a shared feeling of joy that leads to the intensification of the dancing and to the creation and diffusion of new songs. I seek to account for this regenerative potential by pursuing Turner's processual view of ritual performance, which acknowledges moments of structure and lack of structure. In this regard, I develop the dynamic of community‐making and creative flow in the performances with reference to Collins's reading of Durkheim's collective effervescence and Tarde's idea of imitation. As a whole, I argue that paying attention to rhythm and affect, inasmuch as they are a lived realization of structure and flow, is essential for understanding the revitalizing articulation between these terms and for following the ongoing movement of the social.  相似文献   
7.
Galactosyltransferase (GalTase) prepared from human milk was found to exist as a complex with e-lactalbumin as demonstrated by crossed immunoelectrophoresis against specific antibodies raised against the complex. GalTase activity was stable to proteolysis and, when subjected to gel filtration on Ultrogel AcA54, the enzyme activity eluted as a single peak. A second peak of activity was found to be adsorbed to the column matrix and was eluted with buffer containing 1 M NaC1. The hydrophobic fraction represented 5% of the total GalTase activity in human milk. After polyacrylamide gel electrophoresis the main enzyme activity peak was represented by polypeptides of 67kDa molecular weight and of 14kDa molecular weight. Electroblotting of these peptides onto a nitrocellulose membrane followed by determination of GalTase activity showed activity for 45–55 kDa and for 14 kDa peptides. The hydrophobic fraction from the AcA54 column was resolved into polypeptides of 110 kDa-45 kDa molecular weight, all of which contained GalTase activity after blotting. It is supposed that the GalTase from non-proteolyzed milk is composed of a 14 kDa polypeptide containing the active site together with another part of the polypeptide backbone which is involved in the regulation of GalTase activity by -lactalbumin, a third part of the polypeptide is responsible for the membrane insertion.Abbreviations UDP-Gal uridine diphosphatidyl galactose - GlcNAc N-acetylglucosamine - Glc glucose - PAGE polyacrylamide gel electrophoresis - GalTase galactosyl transferase (EC 2.4.1.22) - -ovo pronosac digest fraction of hen ovomucoid To whom correspondence should be addressed.  相似文献   
8.
The nature of the periplastidial pathway of starch biosynthesis was investigated with the model cryptophyte Guillardia theta. The storage polysaccharide granules were shown to be composed of both amylose and amylopectin fractions with a chain length distribution and crystalline organization very similar to those of starch from green algae and land plants. Most starch granules displayed a shape consistent with biosynthesis occurring around the pyrenoid through the rhodoplast membranes. A protein with significant similarity to the amylose-synthesizing granule-bound starch synthase 1 from green plants was found as the major polypeptide bound to the polysaccharide matrix. N-terminal sequencing of the mature protein proved that the precursor protein carries a nonfunctional transit peptide in its bipartite topogenic signal sequence which is cleaved without yielding transport of the enzyme across the two inner plastid membranes. The enzyme was shown to display similar affinities for ADP and UDP-glucose, while the V(max) measured with UDP-glucose was twofold higher. The granule-bound starch synthase from Guillardia theta was demonstrated to be responsible for the synthesis of long glucan chains and therefore to be the functional equivalent of the amylose-synthesizing enzyme of green plants. Preliminary characterization of the starch pathway suggests that Guillardia theta utilizes a UDP-glucose-based pathway to synthesize starch.  相似文献   
9.
Dynamics studies on Calcofluor White bound to the carbohydrate residues of sialylated and asialylated alpha 1-acid glycoprotein (orosomucoid) have been performed. The interaction between the fluorophore and the protein was found to occur preferentially with the glycan residues with a dependence on their spatial conformation. In the presence of sialylated alpha 1-acid glycoprotein, excitation at the red edge of the absorption spectrum of calcofluor does not lead to a shift in the fluorescence emission maximum (440 nm) of the fluorophore. Thus, the emission of calcofluor occurs from a relaxed state. This is confirmed by anisotropy studies as a function of temperature (Perrin plot). In the presence of asialylated alpha 1-acid glycoprotein, red-edge excitation spectra show an important shift (8 nm) of the fluorescence emission maximum of the probe. This reveals that emission of calcofluor occurs before relaxation of the surrounding carbohydrate residues occurs. Emission from a non-relaxed state means that Calcofluor molecules are bound tightly to the carbohydrate residues, a result confirmed by anisotropy studies.  相似文献   
10.
Interactions between the fluorescent probe, calcofluor white, and human serum albumin (HSA) and alpha 1-acid glycoprotein (orosomucoid) are compared. The two proteins have comparable isoelectric points, but alpha 1-acid glycoprotein is highly glycosylated (40% of glycans by weight), while the serum albumin is not. Binding of calcofluor to the proteins induces an increase in both the fluorescence anisotropy and the fluorescence intensity of the fluorophore. Also, we found that the calcofluor exhibits a fluorescence emission with a maximum located at 432, 415 or 445 nm, respectively, in the absence of proteins, in the presence of HSA, and in the presence of alpha 1-acid glycoprotein. The stoichiometries of the calcofluor-serum albumin and calcofluor-alpha 1-acid glycoprotein complexes are 2:1 and 1:1, respectively. The association constants are 0.04 and 0.15 microM-1, respectively. The calcofluor does not interact with Lens culinaris agglutinin (LCA), although the protein has a hydrophobic site. Nevertheless, one cannot exclude that the binding of the fluorophore to the HSA is nonspecific. Our results, when compared with those obtained with calcofluor dissolved in the hydrophobic solvent isobutanol, and with the fluorescent probe, potassium 6-(p-toluidino)-2-naphthalenesulfonate (TNS), bound to alpha 1-acid glycoprotein, indicate that the emission of calcofluor bound to HSA occurs from a hydrophobic state, while that of calcofluor bound to alpha 1-acid glycoprotein occurs from a hydrophilic state. The fluorescence intensity of calcofluor decreases in the presence of carbohydrates isolated from alpha 1-acid glycoprotein, while it increases in the presence of alpha 1-cellulose. Thus, calcofluor interacts mainly with the glycan moiety of alpha 1-acid glycoprotein, and its fluorescence is sensitive to the secondary structure of the glycans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号