首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
  63篇
  2018年   1篇
  2015年   1篇
  2013年   8篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1979年   1篇
  1969年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
Mapping of a putative surface-binding site of human coagulation factor XII   总被引:1,自引:0,他引:1  
We have localized the binding epitope(s) of two murine monoclonal antibodies (B7C9 and P5-2-1) that were shown previously to inhibit the activation of human coagulation factor XII by negatively charged surfaces. A factor XII cDNA expression library in lambda gt11 was screened with antibody B7C9, and 16 immunoreactive bacteriophage were isolated. Fusion proteins from each of the recombinant phage were reactive with both monoclonal antibodies. Two of the phage cDNA inserts were found to code for amino acid residues -6-+31 and +1-+47 of factor XII, respectively, thereby defining the limits of the antigenic peptide to amino acids +1-+31. Each of the remaining 14 recombinant phage contained longer factor XII cDNA inserts that included sequences coding for the amino-terminal 31 amino acid residues. These results were confirmed by direct binding of antibody B7C9 to synthetic peptides containing amino acids 1-14 and 1-28 of factor XII. Further experiments with a set of nested peptides also indicated that amino acid residues 1-4 were essential but not sufficient for binding of B7C9 to the peptides. Hydrophobicity analysis of the amino-terminal region of plasma factor XII revealed a highly hydrophilic region between amino acid residues 5 and 15 that contained positively charged lysine residues at positions 8, 11, and 13. We conclude that a major epitope(s) recognized by monoclonal antibodies B7C9 and P5-2-1 is present in the amino-terminal 28 amino acids of factor XII. It is proposed that binding of these antibodies to factor XII blocks interaction of the positively charged region between residues 5 and 15 with negatively charged surfaces, thereby inhibiting activation.  相似文献   
2.
3.
Macrophage actin-associated tyrosine phosphorylated protein (MAYP) belongs to the Pombe Cdc15 homology (PCH) family of proteins involved in the regulation of actin-based functions including cell adhesion and motility. In mouse macrophages, MAYP is tyrosine phosphorylated after activation of the colony-stimulating factor-1 receptor (CSF-1R), which also induces actin reorganization, membrane ruffling, cell spreading, polarization, and migration. Because MAYP associates with F-actin, we investigated the function of MAYP in regulating actin organization in macrophages. Overexpression of MAYP decreased CSF-1-induced membrane ruffling and increased filopodia formation, motility and CSF-1-mediated chemotaxis. The opposite phenotype was observed with reduced expression of MAYP, indicating that MAYP is a negative regulator of CSF-1-induced membrane ruffling and positively regulates formation of filopodia and directional migration. Overexpression of MAYP led to a reduction in total macrophage F-actin content but was associated with increased actin bundling. Consistent with this, purified MAYP bundled F-actin and regulated its turnover in vitro. In addition, MAYP colocalized with cortical and filopodial F-actin in vivo. Because filopodia are postulated to increase directional motility by acting as environmental sensors, the MAYP-stimulated increase in directional movement may be at least partly explained by enhancement of filopodia formation.  相似文献   
4.
5.
Human CG (hCG) is a member of the glycoprotein hormone family characterized by a heterodimeric structure consisting of a common alpha-subunit noncovalently bound to a hormone-specific beta-subunit. The two subunits are highly intertwined and only the heterodimer is functional, implying that the quaternary structure is critical for biological activity. To assess the dependence of the bioactivity of hCG on the heterodimeric interactions, alpha- and beta-subunits bearing mutations that prevent assembly were covalently linked to form a single chain hCG. Receptor binding and signal transduction of these analogs were tested and their structural integrity analyzed using a panel of monoclonal antibodies (mAbs). These included dimer-specific mAbs, which react with at least four different epitope sites on the hormone, and some that react only with the free beta-subunit. We showed that there was significant loss of quaternary and tertiary structure in several regions of the molecule. This was most pronounced in single chains that had one of the disulfide bonds of the cystine knot disrupted in either the alpha- or beta-subunit. Despite these structural changes, the in vitro receptor binding and signal transduction of the single chain analogs were comparable to those of the nonmutated single chain, demonstrating that not all of the quaternary configuration of the hormone is necessary for biological activity.  相似文献   
6.

Background

The function of proteins is a direct consequence of their three-dimensional structure. The structural classification of proteins describes the ways of folding patterns all proteins could adopt. Although, the protein folds were described in many ways the functional properties of individual folds were not studied.

Results

We have analyzed two β-barrel folds generally adopted by small proteins to be looking similar but have different topology. On the basis of the topology they could be divided into two different folds named SH3-fold and OB-fold. There was no sequence homology between any of the proteins considered. The sequence diversity and loop variability was found to be important for various binding functions.

Conclusions

The function of Oligonucleotide/oligosaccharide-binding (OB) fold proteins was restricted to either DNA/RNA binding or sugar binding whereas the Src homology 3 (SH3) domain like proteins bind to a variety of ligands through loop modulations. A question was raised whether the evolution of these two folds was through DNA shuffling.  相似文献   
7.
We report the molecular epidemiology of highly pathogenic avian influenza (HPAI) virus involved in an outbreak causing death in free-ranging wild birds at Mysore, Karnataka state of India. The virus was typed as HPAI A(H5N8) by conventional and TaqMan probe based real-time PCR assays. Six isolates of HPAI virus were recovered in 9-day-old embryonated chicken eggs. Haemagglutinin gene-based phylogeny of virus isolates showed >?99.9% nucleotide sequence identity with HPAI A(H5N8) isolates from migratory birds and domestic poultry from China and Korea indicating either these wild birds have routed their migration through Korea and/or eastern China or these dead birds must have directly or indirectly contacted with wild birds migrating from Eastern China and/or Korean regions. The study emphasises the role of migratory wild birds in spread of HPAI across the globe.  相似文献   
8.
    
Cleaved high molecular weight kininogen (HKa), as well as its domain 5 (D5), inhibits migration and proliferation induced by angiogenic factors and induces apoptosis in vitro. To study its effect on tube formation we utilized a collagen-fibrinogen, three-dimensional gel, an in vitro model of angiogenesis. HKa, GST-D5 and D5 had a similar inhibitory effect of tube length by 90+/-4.5%, 86+/-5.5% and 77+/-12.9%, respectively. D5-derived synthetic peptides: G440-H455 H475-H485 and G486-K502 inhibited tube length by 51+/-3.7%, 54+/-3.8% and 77+/-1.7%, respectively. By a comparison of its inhibitory potency and its sequences, a functional sequence of HKa was defined to G486-G496. PP2, a Src family kinase inhibitor, prevented tube formation in a dose-dependent manner (100-400 nM), but PP3 at 5 microM, an inactive analogue of PP2, did not. HKa and D5 inhibited Src 416 phosphorylation by 62+/-12.3% and 83+/-6.1%, respectively. The C-terminal Src kinase (Csk) inhibits Src kinase activity. Using a siRNA to Csk, expression of Csk was down-regulated by 86+/-7.0%, which significantly increased tube length by 27+/-5.8%. The addition of HKa and D5 completely blocked this effect. We further showed that HKa inhibited Src family kinase activity by disrupting the complex of uPAR, alphavbeta3 integrin and Src. Our results indicate that the anti-angiogenic effect of HKa and D5 is mediated at least in part through Src family kinases and identify a potential novel target for therapeutic inhibition of neovascularization in cancer and inflammatory arthritis.  相似文献   
9.
The amino acids involved in substrate (cAMP) binding to human platelet cGMP-inhibited cAMP phosphodiesterase (PDE3A) are identified. Less is known about the inhibitor (cGMP) binding site. We have now synthesized a nonhydrolyzable reactive cGMP analog, Rp-guanosine-3′,5′-cyclic-S-(4-bromo-2, 3-dioxobutyl)monophosphorothioate (Rp-cGMPS-BDB). Rp-cGMPS-BDB irreversibly inactivates PDE3A (KI = 43.4 ± 7.2 μM and kcart = 0.007 ± 0.0006 min−1). The effectiveness of protectants in decreasing the rate of inactivation by Rp-cGMPS-BDB is: Rp-cGMPS (Kd = 72 μM) > Sp-cGMPS (124), Sp-cAMPS (182) > GMP (1517), Rp-cAMPS (3762), AMP (4370 μM). NAD+, neither a substrate nor an inhibitor of PDE3A, does not protect. Nonhydrolyzable cGMP analogs exhibit greater affinity than the cAMP analogs. These results indicate that Rp-cGMPS-BDB targets favorably the cGMP binding site consistent with a docking model of PDE3A-Rp-cGMPS-BDB active site. We conclude that Rp-cGMPS-BDB is an effective active site-directed affinity label for PDE3A with potential for other cGMP-dependent enzymes.  相似文献   
10.
Colony-stimulating factor-1 (CSF-1)-stimulated CSF-1 receptor (CSF-1R) tyrosine phosphorylation initiates survival, proliferation, and differentiation signaling pathways in macrophages. Either activation loop Y807F or juxtamembrane domain (JMD) Y559F mutations severely compromise CSF-1-regulated proliferation and differentiation. YEF, a CSF-1R in which all eight tyrosines phosphorylated in the activated receptor were mutated to phenylalanine, lacks in vitro kinase activity and in vivo CSF-1-regulated tyrosine phosphorylation. The addition of Tyr-807 alone to the YEF backbone (Y807AB) led to CSF-1-independent but receptor kinase-dependent proliferation, without detectable activation loop Tyr-807 phosphorylation. The addition of Tyr-559 alone (Y559AB) supported a low level of CSF-1-independent proliferation that was slightly enhanced by CSF-1, indicating that Tyr-559 has a positive Tyr-807-independent effect. Consistent with the postulated autoinhibitory role of the JMD Tyr-559 and its relief by ligand-induced Tyr-559 phosphorylation, the addition of Tyr-559 to the Y807AB background suppressed proliferation in the absence of CSF-1, but restored most of the CSF-1-stimulated proliferation. Full restoration of kinase activation and proliferation required the additional add back of JMD Tyr-544. Inhibitor experiments indicate that the constitutive proliferation of Y807AB macrophages is mediated by the phosphatidylinositol 3-kinase (PI3K) and ERK1/2 pathways, whereas proliferation of WT and Y559,807AB macrophages is, in addition, contributed to by Src family kinase (SFK)-dependent pathways. Thus Tyr-807 confers sufficient kinase activity for strong CSF-1-independent proliferation, whereas Tyr-559 maintains the receptor in an inactive state. Tyr-559 phosphorylation releases this restraint and may also contribute to the CSF-1-regulated proliferative response by activating Src family kinase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号