首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   5篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   9篇
  2012年   5篇
  2011年   5篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1971年   1篇
排序方式: 共有60条查询结果,搜索用时 78 毫秒
1.
Small conductance Ca2+-sensitive potassium (SK2) channels are voltage-independent, Ca2+-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca2+ permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3′ terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca2+ and Ca2+-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca2+ influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses.  相似文献   
2.
3.
The RNA genome of tobacco etch potyvirus (TEV) was engineered to express bacterial beta-glucuronidase (GUS) fused to the virus helper component proteinase (HC-Pro). It was shown previously that prolonged periods (approximately 1 month) of TEV-GUS propagation in plants resulted in the appearance of spontaneous deletion variants. Nine deletion mutants were identified by nucleotide sequence analysis of 40 cDNA clones obtained after polymerase chain reaction amplification. The mutants were missing between 1,741 and 2,074 nucleotides from TEV-GUS, including the sequences coding for most of GUS and the N-terminal region of HC-Pro. This region of HC-Pro contains determinants involved in helper component activity during aphid transmission, as well as a highly conserved series of cysteine residues. The deletion variants were shown to replicate and move systemically without the aid of a helper virus. Infectious viruses harboring the two largest HC-Pro deletions (termed TEV-2del and TEV-7del) were reconstructed by subcloning the corresponding mutated regions into full-length DNA copies of the TEV genome. Characterization of these and additional variants derived by site-directed mutagenesis demonstrated that deletion of sequences coding for the HC-Pro N-terminal domain had a negative effect on accumulation of viral RNA and coat protein. The TEV-2del variant possessed an aphid-nontransmissible phenotype that could be rescued partially by prefeeding of aphids on active HC-Pro from another potyvirus. These data suggest that the N-terminal domain of HC-Pro or its coding sequence enhances virus replication or genome expression but does not provide an activity essential for these processes. The function of this domain, as well as a proposed deletion mechanism involving nonhomologous recombination, is discussed.  相似文献   
4.
Recent investigations have shown that members of the KCTD family play important roles in fundamental biological processes. Despite their roles, very limited information is available on their structures and molecular organization. By combining different experimental and theoretical techniques, we have here characterized the two folded domains of KCTD12, an integral component and modulator of the GABAB2 receptor. Secondary prediction methods and CD spectroscopy have shown that the N‐terminal domain KCTD12BTB assumes an α/β structure, whereas the C‐terminal domain KCTD12H1 is predominantly characterized by a β‐structure. Binding assays indicate that the two domains independently expressed show a good affinity for each other. This suggests that the overall protein is likely endowed with a rather compact structure with two interacting structured domains joint by a long disordered region. Notably, both KCTD12BTB and KCTD12H1 are tetrameric when individually expressed. This finding could modify the traditional view that ascribes only to POZ/BTB domain a specific oligomerization role. The first quantification of the affinity of KCTD12POZ/BTB for the C‐terminal region of GABAB2 shows that it falls in the low micromolar range. Interestingly, we also demonstrate that a GABAB2‐related peptide is able to bind KCTD12BTB with a very high affinity. This peptide may represent a useful tool for modulating KCTD12/GABAB2 interaction in vitro and may also constitute the starting point for the development of peptidomimetic compounds with a potential for therapeutic applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
6.
Adhesion to the extracellular matrix regulates numerous changes in the actin cytoskeleton by regulating the activity of the Rho family of small GTPases. Here, we report that adhesion and the associated changes in cell shape and cytoskeletal tension are all required for GTP-bound RhoA to activate its downstream effector, ROCK. Using an in vitro kinase assay for endogenous ROCK, we found that cells in suspension, attached on substrates coated with low density fibronectin, or on spreading-restrictive micropatterned islands all exhibited low ROCK activity and correspondingly low myosin light chain phosphorylation, in the face of high levels of GTP-bound RhoA. In contrast, allowing cells to spread against substrates rescued ROCK and myosin activity. Interestingly, inhibition of tension with cytochalasin D or blebbistatin also inhibited ROCK activity within 20 min. The abrogation of ROCK activity by cell detachment or inhibition of tension could not be rescued by constitutively active RhoA-V14. These results suggest the existence of a feedback loop between cytoskeletal tension, adhesion maturation, and ROCK signaling that likely contributes to numerous mechanochemical processes.  相似文献   
7.
SPECs, small binding proteins for Cdc42   总被引:1,自引:0,他引:1  
The Rho GTPase, Cdc42, regulates a wide variety of cellular activities including actin polymerization, focal complex assembly, and kinase signaling. We have identified a new family of very small Cdc42-binding proteins, designated SPECs (for Small Protein Effector of Cdc42), that modulates these regulatory activities. The two human members, SPEC1 and SPEC2, encode proteins of 79 and 84 amino acids, respectively. Both contain a conserved N-terminal region and a centrally located CRIB (Cdc42/Rac Interactive Binding) domain. Using a yeast two-hybrid system, we found that both SPECs interact strongly with Cdc42, weakly with Rac1, and not at all with RhoA. Transfection analysis revealed that SPEC1 inhibited Cdc42-induced c-Jun N-terminal kinase (JNK) activation in COS1 cells in a manner that required an intact CRIB domain. Immunofluorescence experiments in NIH-3T3 fibroblasts demonstrated that both SPEC1 and SPEC2 showed a cortical localization and induced the formation of cell surface membrane blebs, which was not dependent on Cdc42 activity. Cotransfection experiments demonstrated that SPEC1 altered Cdc42-induced cell shape changes both in COS1 cells and in NIH-3T3 fibroblasts and that this alteration required an intact CRIB domain. These results suggest that SPECs act as novel scaffold molecules to coordinate and/or mediate Cdc42 signaling activities.  相似文献   
8.
9.
Cdc42, a small GTPase, regulates actin polymerization and other signaling pathways through interaction with many different downstream effector proteins. Most of these effector proteins contain a Cdc42-binding domain, called a CRIB domain. Here, we describe the evolutionary analysis of these CRIB-containing proteins in yeast, worms, flies and humans. The number of CRIB-containing effector proteins increases from yeast to humans, involving both an increase within families and the emergence of new families. These evolutionary changes correlate with the development of the more complex signaling pathways present in higher organisms.  相似文献   
10.
Focal adhesion kinase (FAK) transduces cell adhesion to the extracellular matrix into proliferative signals. We show that FAK overexpression induced proliferation in endothelial cells, which are normally growth arrested by limited adhesion. Interestingly, displacement of FAK from adhesions by using a FAK−/− cell line or by expressing the C-terminal fragment FRNK also caused an escape of adhesion-regulated growth arrest, suggesting dual positive and negative roles for FAK in growth regulation. Expressing kinase-dead FAK-Y397F in FAK−/− cells prevented uncontrolled growth, demonstrating the antiproliferative function of inactive FAK. Unlike FAK overexpression–induced growth, loss of growth control in FAK−/− or FRNK-expressing cells increased RhoA activity, cytoskeletal tension, and focal adhesion formation. ROCK inhibition rescued adhesion-dependent growth control in these cells, and expression of constitutively active RhoA or ROCK dysregulated growth. These findings demonstrate the ability of FAK to suppress and promote growth, and underscore the importance of multiple mechanisms, even from one molecule, to control cell proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号