首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   30篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   15篇
  2014年   18篇
  2013年   25篇
  2012年   16篇
  2011年   16篇
  2010年   27篇
  2009年   25篇
  2008年   15篇
  2007年   13篇
  2006年   14篇
  2005年   13篇
  2004年   14篇
  2003年   6篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   6篇
  1998年   9篇
  1997年   12篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   8篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   7篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   16篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有364条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
The phylogeny of Greya Busck (Lepidoptera: Prodoxidae) was inferred from nucleotide sequence variation across a 765-bp region in the cytochrome oxidase I and II genes of the mitochondrial genome. Most parsimonious relationships of 25 haplotypes from 16 Greya species and two outgroup genera (Tetragma and Prodoxus) showed substantial congruence with the species relationships indicated by morphological variation. Differences between mitochondrial and morphological trees were found primarily in the positions of two species, G. variabilis and G. pectinifera, and in the branching order of the three major species groups in the genus. Conflicts between the data sets were examined by comparing levels of homoplasy in characters supporting alternative hypotheses. The phylogeny of Greya species suggests that host-plant association at the family level and larval feeding mode are conservative characters. Transition/transversion ratios estimated by reconstruction of nucleotide substitutions on the phylogeny had a range of 2.0-9.3, when different subsets of the phylogeny were used. The decline of this ratio with the increase in maximum sequence divergence among taxa indicates that transitions are masked by transversions along deeper internodes or long branches of the phylogeny. Among transitions, substitutions of A-->G and T-->C outnumbered their reciprocal substitutions by 2-6 times, presumably because of the approximately 4:1 (77%) A+T-bias in nucleotide base composition. Of all transversions, 73%-80% were A<-->T substitutions, 85% of which occurred at third positions of codons; these estimates did not decrease with an increase in maximum sequence divergence of taxa included in the analysis. The high frequency of A<-->T substitutions is either a reflection or an explanation of the 92% A+T bias at third codon positions.   相似文献   
5.
6.
To examine the contribution of the transmembrane envelope glycoprotein (TM) to the infectivity of the human T-cell leukemia virus type 1 (HTLV-1), single amino acid substitutions were introduced throughout its ectodomain. The mutated envelopes were tested for intracellular maturation and for functions, including ability to elicit syncytium formation and ability to mediate cell-to-cell transmission of the virus. Three major phenotypes, defining three functionally distinct regions, were identified. (i) Mutations causing defects in intracellular maturation of the envelope precursor are mostly distributed in the central portion of the TM ectodomain, containing the immunosuppressive peptide. This region, which includes vicinal cysteines thought to form an intramolecular disulfide bridge, is probably essential for correct folding of the protein. (ii) Mutations resulting in reduced syncytium-forming ability despite correct intracellular maturation are clustered in the amino-terminal part of the TM ectodomain, within the leucine zipper-like motif. Similar motifs with a propensity to form coiled-coil structures have been implicated in the fusion process driven by other viral envelope proteins, and HTLV-1 may thus conform to this general rule for viral fusion. (iii) Mutants with increased syncytium-forming ability define a region immediately amino-terminal to the membrane-spanning domain. Surprisingly, these mutants exhibited severe defects in infectivity, despite competence for fusion. Existence of this phenotype indicates that capacity for cell-to-cell fusion is not sufficient to ensure viral entry, even in cell-to-cell transmission. The ectodomain of the TM glycoprotein thus may be involved in postfusion events required for full infectivity of HTLV-1, which perhaps represents a unique feature of this poorly infectious retrovirus.  相似文献   
7.
Water-protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather than bulk solvent interactions. The tendencies of different atom and residue types to be the nearest protein neighbors of bound water molecules correlated with other hydrophobicity scales, verified the relevance of crystallographically determined water positions, and provided a direct experimental measure of water affinity in the context of the folded protein. This specific hydrophilicity was highly correlated with hydrogen-bonding capacity, and correlated better with experimental than computationally derived measures of partitioning between aqueous and organic phases. Atoms with related chemistry clustered with respect to the number of bound water molecules. Neutral and negatively charged oxygen atoms were the most hydrophilic, followed by positively-charged then neutral nitrogen atoms, followed by carbon and sulfur atoms. Agreement between observed side-chain specific hydrophilicity values and values derived from the atomic hydrophilicity scale showed that hydrophilicity values can be synthesized for different functional groups, such as unusual side or main chains, discontinuous epitopes, and drug molecules. Two methods of atomic hydrophilicity analysis provided a measure of complementarity in the interfaces of trypsin:pancreatic trypsin inhibitor and HIV protease:U-75875 inhibitor complexes. © 1995 Wiley-Liss, Inc.  相似文献   
8.
9.
The human T-cell leukemia virus type I (HTLV-I) envelope protein is synthesized as a gp61 precursor product cleaved into two mature proteins, a gp45 exterior protein and a gp20 anchoring the envelope at the cell membrane. Using N-glycosylation inhibitors and site-directed mutagenesis of the potential glycosylation sites, we have studied the HTLV-I envelope intracellular maturation requirements for syncytium formation. We show here that experimental conditions resulting in the absence of precursor cleavage (tunicamycin, monensin treatments, and use of inhibitors of the reticulum steps of the N glycosylations) also result in no cell surface expression of envelope protein. The lack of syncytium formation observed in these cases is thus explained by incorrect intracellular transport. When the precursor is cleaved in the Golgi stack (no treatment or treatment with inhibitors of the Golgi steps of the N glycosylations), it is transported to the cell surface in all the cases examined. Syncytium formation is markedly reduced, however, when Golgi glycosylations are incorrect, which shows that the sugar moieties are involved in the envelope functions. Site-directed mutagenesis demonstrates that each of the five potential glycosylation sites is actually glycosylated. Glycosylation of sites 1 and 5 is required for normal maturation, whereas that of sites 2, 3, and 4 is dispensable. Glycosylation of each site, however, is required for normal syncytium formation. Altogether, the restraints exerted by the cell for the HTLV-I envelope to be transported and functional are very high, which might play a role in the observed conservation of the envelope amino acid sequence between various strains.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号