首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   12篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   6篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1995年   2篇
  1994年   1篇
  1991年   2篇
  1990年   3篇
排序方式: 共有56条查询结果,搜索用时 31 毫秒
1.
Human salivary carbonic anhydrase (HCA VI) was purified by inhibitor affinity chromatography and its location in the human parotid and submandibular glands identified, using a polyclonal antiserum raised against the purified enzyme in rabbits in conjunction with the peroxidase-antiperoxidase complex method. The antibodies raised against the purified enzyme in rabbits did not crossreact with the HCA II or I. However, they slightly recognized human IgA; the antiserum was therefore absorbed with human IgA before immunohistochemical use. HCA VI-specific staining was detected in the cytoplasm and particularly in the secretory granules of the serous acinar cells of both parotid and submandibular glands, the staining of the secretory granules being most distinct in paraformaldehyde-fixed tissues. Some epithelial cells and the luminal content of the striated ducts also gave a specific HCA VI staining. Staining specific for HCA II was also found in the granules of the serous acinar cells, particularly in the submandibular gland when Carnoy fluid fixation was used. Slight HCA II-specific staining was also detected in the striated ductal cells in the Carnoy fluid-fixed specimens. No staining specific for HCA I was detected. The results indicate that the serous acinar cells in human parotid and submandibular glands contain abundant HCA II and HCA VI. Interestingly, only HCA VI is secreted into the saliva, although both enzymes appear to be located in structures resembling the secretory granules in the acinar cells. The enzymes probably form a mutually complementary system regulating the salivary buffer capacity.  相似文献   
2.
3.
Janus (Jak) tyrosine kinases contain a tyrosine kinase (JH1) domain adjacent to a catalytically inactive pseudokinase domain (JH2). The JH2 domain has been implicated in regulation of Jak activity, but its function remains poorly understood. Here, we found that the JH2 domain negatively regulates the activity of Jak2 and Jak3. Deletion of JH2 resulted in increased tyrosine phosphorylation of the Jak2- and Jak3-JH2 deletion mutants as well as of coexpressed STAT5. In cytokine receptor signaling, the deletion of the Jak2- and Jak3-JH2 domains resulted in interferon-gamma and interleukin-2-independent STAT activation, respectively. However, cytokine stimulations did not further induce the JH2 deletion mutant-mediated STAT activation. The deletion of the Jak2 JH2 domain also abolished interferon-gamma-inducible kinase activation, although it did not affect the reciprocal Jak1-Jak2 interaction in 293T cells. Chimeric constructs, where the JH2 domains were swapped between Jak2 and Jak3, retained low basal activity and cytokine inducible signaling, indicating functional conservation between the two JH2 domains. However, the basal activity of Jak2 was significantly lower than that of Jak3, suggesting differences in the regulation of Jak2 and Jak3 activity. In conclusion, we found that the JH2 domain has a conserved function in Jak2 and Jak3. The JH2 domain is required for two distinct functions in cytokine signaling: (i) inhibition of the basal activity of Jak2 and Jak3, and (ii) cytokine-inducible activation of signaling. The Jak-JH2 deletion mutants are catalytically active, activate STAT5, and interact with another Jak kinase, but the JH2 domain is required to connect these signaling events to receptor activation. Thus, we propose that the JH2 domain contributes to both the uninduced and ligand-induced Jak-receptor complex, where it acts as a cytokine-inducible switch to regulate signal transduction.  相似文献   
4.
Ornithine decarboxylase (ODC), the first rate-limiting enzyme in the polyamine biosynthesis is one of the most rapidly degraded proteins in eukaryotic cells. Mammalian ODC is a notable exception to the widely accepted dogma that ubiquitination is always required for targeting a protein to degradation by the 26S proteasome. However, while it is well established that in mammalian cells degradation of ODC is ubiquitin independent, the requirement of ubiquitination for degradation of ODC in yeast cells remained undetermined. We have investigated ODC degradation in three mutant strains of Saccharomyces cerevisiae in which ubiquitin-dependent protein degradation activity is severely compromised. While yeast ODC was rapidly degraded in all these mutant strains the degradation of N-end rule substrates was inhibited. A mutant mouse ODC that fails to interact with Az was rapidly degraded in yeast cells but was stable in mammalian cells suggesting that interaction with a mammalian Az like yeast protein is not necessary for the degradation of ODC in yeast cells. Deletion analysis revealed that sequences from its unique N-terminus are involved in targeting yeast ODC to rapid degradation in yeast cells.  相似文献   
5.
Jak tyrosine kinases have a unique domain structure containing a kinase domain (JH1) adjacent to a catalytically inactive pseudokinase domain (JH2). JH2 is crucial for inhibition of basal Jak activity, but the mechanism of this regulation has remained elusive. We show that JH2 negatively regulated Jak2 in bacterial cells, indicating that regulation is an intrinsic property of Jak2. JH2 suppressed basal Jak2 activity by lowering the V(max) of Jak2, whereas JH2 did not affect the K(m) of Jak2 for a peptide substrate. Three inhibitory regions (IR1-3) within JH2 were identified. IR3 (residues 758-807), at the C terminus of JH2, directly inhibited JH1, suggesting an inhibitory interaction between IR3 and JH1. Molecular modeling of JH2 showed that IR3 could form a stable alpha-helical fold, supporting that IR3 could independently inhibit JH1. IR2 (725-757) in the C-terminal lobe of JH2, and IR1 (619-670), extending from the N-terminal to the C-terminal lobe, enhanced IR3-mediated inhibition of JH1. Disruption of IR3 either by mutations or a small deletion increased basal Jak2 activity, but abolished interferon-gamma-inducible signaling. Together, the results provide evidence for autoinhibition of a Jak family kinase and identify JH2 regions important for autoregulation of Jak2.  相似文献   
6.
Syndecans function as co-receptors for integrins on different matrixes. Recently, syndecan-1 has been shown to be important for α2β1 integrin-mediated adhesion to collagen in tumor cells by regulating cell adhesion and migration on two-dimensional collagen. However, the function of syndecans in supporting α2β1 integrin interactions with three-dimensional (3D) collagen is less well studied. Using loss-of-function and overexpression experiments we show that in 3D collagen syndecan-4 supports α2β1-mediated collagen matrix contraction. Cell invasion through type I collagen containing 3D extracellular matrix (ECM) is driven by α2β1 integrin and membrane type-1 matrix metalloproteinase (MT1-MMP). Here we show that mutational activation of K-ras correlates with increased expression of α2β1 integrin, MT1-MMP, syndecan-1, and syndecan-4. While K-ras-induced α2β1 integrin and MT1-MMP are positive regulators of invasion, silencing and overexpression of syndecans demonstrate that these proteins inhibit cell invasion into collagen. Taken together, these data demonstrate the existence of a complex interplay between integrin α2β1, MT1-MMP, and syndecans in the invasion of K-ras mutant cells in 3D collagen that may represent a mechanism by which tumor cells become more invasive and metastatic.  相似文献   
7.
The caspase-8 inhibitor c-FLIP exists as two splice variants, c-FLIP(L) and c-FLIP(S), with distinct roles in death receptor signaling. The mechanisms determining their turnover have not been established. We found that in differentiating K562 erythroleukemia cells both c-FLIP isoforms were inducibly degraded by the proteasome, but c-FLIP(S) was more prone to ubiquitylation and had a considerably shorter half-life. Analysis of the c-FLIP(S)-specific ubiquitylation revealed two lysines, 192 and 195, C-terminal to the death effector domains, as principal ubiquitin acceptors in c-FLIP(S) but not in c-FLIP(L). Furthermore the c-FLIP(S)-specific tail of 19 amino acids, adjacent to the two target lysines, was demonstrated to be the key element determining the isoform-specific instability of c-FLIP(S). Molecular modeling in combination with site-directed mutagenesis demonstrated that the C-terminal tail is required for correct positioning and subsequent ubiquitylation of the target lysines. Because the antiapoptotic operation of c-FLIP(S) was not affected by the tail deletion, the antiapoptotic activity and ubiquitin-mediated degradation of c-FLIP(S) are functionally and structurally independent processes. The presence of a small destabilizing sequence in c-FLIP(S) constitutes an important determinant of c-FLIP(S)/c-FLIP(L) ratios by allowing differential degradation of c-FLIP isoforms. The conformation-based predisposition of c-FLIP(S) to ubiquitin-mediated degradation introduces a novel concept to the regulation of the death-inducing signaling complex.  相似文献   
8.
Density functional theory (DFT) methodology was used to examine the structural properties of linear metal string complexes: [Ru(3)(dpa)(4)X(2)] (X = Cl(-), CN(-), NCS(-), dpa = dipyridylamine(-)), [Ru(5)(tpda)(4)Cl(2)], and hypothetical, not yet synthesized complexes [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] (tpda = tri-α-pyridyldiamine(2-), tpta = tetra-α-pyridyltriamine(3-), ppta = penta-α-pyridyltetraamine(4-)). Our specific focus was on the two longest structures and on comparison of the string complexes and unsupported ruthenium backboned chain complexes, which have weaker ruthenium-ruthenium interactions. The electronic structures were studied with the aid of visualized frontier molecular orbitals, and Bader's quantum theory of atoms in molecules (QTAIM) was used to study the interactions between ruthenium atoms. The electron density was found to be highest and distributed most evenly between the ruthenium atoms in the hypothetical [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] string complexes.  相似文献   
9.
Tytti  Sarjala  Seppo  Kaunisto 《Plant and Soil》2002,238(1):141-149
Potassium and free polyamine concentrations in the leaves of silver birch (Betula pendula Roth) and downy birch (Betula pubescens Ehrh) were followed during three successive growing seasons 1996, 1997 and 1998 in order to define K deficiency levels.The highest foliar K concentrations were found in June. In August, the K concentrations were lower and remained quite stable in Betula pendula but varied in Betula pubescens. In addition to a common diamine, putrescine, and the polyamines, spermidine and spermine, also a less common diamine and polyamine, 1,3-diaminopropane and norspermidine were found in the birch leaves. The accumulation of both diamines, putrescine and 1,3-diaminopropane, was used to define the critical levels of K nutrition in birch leaves. Foliar K concentrations below 7–8 mg g –1 DW were found to correlate with the accumulation of diamines at most sampling dates.  相似文献   
10.
The endothelial cell is the essential cell type forming the inner layer of the vasculature. Two families of receptor tyrosine kinases (RTKs) are almost completely endothelial cell specific: the vascular endothelial growth factor (VEGF) receptors (VEGFR1-3) and the Tie receptors (Tie1 and Tie2). Both are key players governing the generation of blood and lymphatic vessels during embryonic development. Because the growth of new blood and lymphatic vessels (or the lack thereof) is a central element in many diseases, the VEGF and the Tie receptors provide attractive therapeutic targets in various diseases. Indeed, several drugs directed to these RTK signaling pathways are already on the market, whereas many are in clinical trials. Here we review the VEGFR and Tie families, their involvement in developmental and pathological angiogenesis, and the different possibilities for targeting them to either block or enhance angiogenesis and lymphangiogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号