首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  5篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
2.
Aim This study aims to elucidate the phylogeography of the murid rodent Lemniscomys striatus and to evaluate the relative roles of ecological change, habitat patchiness, rivers and geological barriers in structuring patterns of diversity. Location Sub‐Saharan Africa. Methods The extent of phylogeographic patterns and molecular genetic diversity (cytochrome b gene) were addressed in a survey of 128 individuals of L. striatus from 42 localities. Using maximum parsimony, maximum likelihood, Bayesian, network and genetic structure analyses, we inferred intraspecific relationships and tested hypotheses for historical patterns of gene flow within L. striatus. Results Our results identified four major geographical clades within L. striatus: a West African clade, a Benin‐Nigeria clade, a Central African clade, and an East African clade. Several subclades were identified within these four major clades. Restricted gene flow with isolation by distance was recorded, which is congruent with the low dispersal ability of such a small murid rodent. No clear signal of population expansion was detected within clades or subclades. Main conclusions The western rift system and the Volta and Niger rivers may have acted as long‐term extrinsic barriers to gene flow, resulting in the emergence of the four main clades of L. striatus. The observed pattern of mitochondrial variation observed within each clade probably results from late Pleistocene climatic and vegetation changes: during adverse conditions (forest expansion), L. striatus may have survived only in refugia, and then experienced range expansion under favourable conditions (savanna expansion).  相似文献   
3.
4.
Aim This study aims to elucidate the phylogeography of the murid rodent Praomys misonnei and to document whether or not rain forest refugia and rivers structure patterns of diversity within this species. Location Tropical Africa, from Ghana to Kenya. Methods Patterns of genetic structure and signatures of population history (cytochrome b gene) were assessed in a survey of 229 individuals from 54 localities. Using maximum likelihood, Bayesian, network and genetic structure analyses, we inferred intra‐specific relationships and tested hypotheses for historical patterns of gene flow within P. misonnei. Results Our phylogenetic analyses reveal a strong phylogeographical structure. We identified four major geographical clades within P. misonnei: one clade in Ghana and Benin, a Nigerian clade, a West Central African clade and a Central and East African clade. Several subclades were identified within these four major clades. A signal of population expansion was detected in most clades or subclades. Coalescence within all of the major clades of P. misonnei occurred during the Middle Pleistocene and/or the beginning of Late Pleistocene. Main conclusions Our results suggest a role for both Pleistocene refugia and rivers in structuring genetic diversity in P. misonnei. This forest‐dwelling rodent may have been isolated in a number of forest fragments during arid periods and expanded its range during wetter periods. Potential forest refugia may have been localized in Benin–Ghana, south‐western Cameroon, southern Gabon, northern Gabon and eastern Democratic Republic of Congo–western Uganda. The Niger and/or the Cross Rivers, the Oubangui‐Congo, Sanaga, Ogooue and/or Ivindo Rivers probably stopped the re‐expansion of the species from relict areas.  相似文献   
5.

Objectives

Antibiotic resistance (ABR) particularly hits resource poor countries, and is fuelled by irrational antibiotic (AB) prescribing. We surveyed knowledge, attitudes and practices of AB prescribing among medical students and doctors in Kisangani, DR Congo.

Methods

Self-administered questionnaires.

Results

A total of 184 questionnaires were completed (response rate 94.4%). Knowledge about AB was low (mean score 4.9/8 points), as was the estimation of local resistance rates of S. Typhi and Klebsiella spp.(correct by 42.5% and 6.9% of respondents respectively). ABR was recognized as a problem though less in their own practice (67.4%) than nation- or worldwide (92.9% and 85.5%, p<.0001). Confidence in AB prescribing was high (88.6%) and students consulted more frequently colleagues than medical doctors when prescribing (25.4% versus 11.6%, p  = 0.19). Sources of AB prescribing included pharmaceutical companies (73.9%), antibiotic guidelines (66.3%), university courses (63.6%), internet-sites (45.7%) and WHO guidelines (26.6%). Only 30.4% and 16.3% respondents perceived AB procured through the central procurement and local pharmacies as of good quality. Local AB guidelines and courses about AB prescribing are welcomed (73.4% and 98.8% respectively).

Conclusions

This data shows the need for interventions that support rational AB prescribing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号