全文获取类型
收费全文 | 457篇 |
免费 | 17篇 |
专业分类
474篇 |
出版年
2024年 | 3篇 |
2022年 | 6篇 |
2021年 | 15篇 |
2020年 | 5篇 |
2019年 | 4篇 |
2017年 | 2篇 |
2016年 | 11篇 |
2015年 | 11篇 |
2014年 | 23篇 |
2013年 | 21篇 |
2012年 | 27篇 |
2011年 | 37篇 |
2010年 | 9篇 |
2009年 | 11篇 |
2008年 | 19篇 |
2007年 | 23篇 |
2006年 | 14篇 |
2005年 | 19篇 |
2004年 | 12篇 |
2003年 | 15篇 |
2002年 | 10篇 |
2001年 | 10篇 |
2000年 | 18篇 |
1999年 | 10篇 |
1998年 | 5篇 |
1997年 | 9篇 |
1996年 | 6篇 |
1995年 | 5篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 14篇 |
1991年 | 7篇 |
1990年 | 5篇 |
1989年 | 8篇 |
1988年 | 8篇 |
1987年 | 7篇 |
1986年 | 2篇 |
1985年 | 4篇 |
1984年 | 3篇 |
1983年 | 5篇 |
1981年 | 5篇 |
1980年 | 5篇 |
1979年 | 4篇 |
1978年 | 2篇 |
1975年 | 2篇 |
1974年 | 2篇 |
1973年 | 4篇 |
1972年 | 6篇 |
1969年 | 3篇 |
1965年 | 2篇 |
排序方式: 共有474条查询结果,搜索用时 0 毫秒
1.
The presence of visual impairment (VI) and hearing loss (HL) with may be a marker for subsequent cognitive decline over time in older people. A prospective, longitudinal population-based study of the 3654 participants of the Blue Mountains Eye Study were assessed for the associations between VI and HL and a decline in mini-mental state examination (MMSE) scores over a duration of 10 years from the 5-year (baseline of this report) to the 15-year follow-up visits. MMSE was assessed at the 5-, 10- and 15-year follow-up visits. A decline ≥3 scores from 5-year to 10- or 15-year visits indicated possible cognitive decline. VI was defined as best-corrected visual acuity <6/12 in the worse-eye, HL was defined as pure-tone average >40 decibels in the worse-ear and dual sensory impairment (DSI) was defined by the co-presence of VI and HL, detected at 5-year follow-up (baseline of this report). Participants with no VI and HL over the same 5- or 10-year corresponding period were controls. Associations of VI, HL and DSI with possible cognitive decline were assessed using logistic regression models adjusting for age and sex after excluding subjects with a stroke history. The presence of VI, HL or DSI was not associated with possible cognitive decline over 5 years (odds ratio (OR) 0.84, 95% confidence-intervals (CI) 0.40–1.79, OR 1.02, 95% CI 0.61–1.70 and 1.41, 95% CI 0.54–3.72, respectively) or 10 years (OR 1.09, 95% CI 0.52–2.30, OR 1.09, 95% CI 0.65–1.82 and 1.15, 95% CI 0.28–4.73, respectively). There were no changes to these findings after adjustment for other potential confounders. Age was significantly associated with possible cognitive decline (OR 1.07, 95% CI 1.04–1.10 for both periods). Neither visual impairment, hearing loss nor dual sensory impairment was independently associated with subsequent decline in cognition. 相似文献
2.
Isolation of nuclear acidic proteins from rat tissues. Characterization of acetylated liver nuclear acidic proteins 总被引:3,自引:2,他引:3
下载免费PDF全文

Nuclear acidic proteins isolated from rat brain, heart, kidney and liver showed similar, complex patterns on electrophoresis in sodium dodecyl sulphate-polyacrylamide gels. The contamination of nuclear acidic proteins by nuclear-membrane acidic proteins was found to the extent of 11%. Incorporation of [(3)H]acetate into the various nuclear acidic proteins in vivo, which were fractionated by polyacrylamide-gel electrophoresis, differed from tissue to tissue. Hydrolysis of these acetylated nuclear acidic proteins with 6m-HCl at 110 degrees C released 70% of the radioactivity, which indicated that labile acetyl groups had been incorporated into these proteins. Analysis of [(3)H]acetate-labelled nuclear acidic proteins revealed two acetylated amino acid residues, N(2)-acetylserine and N(2)-acetyl-lysine. The significance of the role played by nuclear acidic proteins in relation to gene regulation is discussed. 相似文献
3.
4.
5.
Durable immunity against fatal L. major infection in genetically susceptible mice can be induced by immunization with 150,000-rad irradiated or heat-killed promastigotes administered i.v. or to a lesser extent i.p. Conversely, subcutaneous (s.c.) and intramuscular (i.m.) injections are not only totally ineffective but generally increase susceptibility to and enhance the progression of the disease, leading to earlier mortality. This detrimental effect is particularly evident with lower infecting challenge doses. Disease exacerbation is apparent in mice given 4 X s.c. injections of as few as 2 X 10(4) irradiated promastigotes, but it appears most potent after doses of 2 X 10(7). When mice given 4 X s.c. injections were subsequently immunized i.v. with 2 X 10(7) irradiated promastigotes, they failed to develop any evidence of protection against infection with 2 X 10(5) promastigotes, whereas mice given i.v. immunization alone were strongly protected. Thus, s.c. injections are capable of blocking the prophylactic effect of i.v. immunization with irradiated parasites. This inhibitory effect can be achieved with a single s.c. injection, although rather less potently than with four, and is even effective against four repeated weekly i.v. immunizations. Once induced, the effect persists undiminished after 100 days. A weaker effect is also inducible by s.c. injection given after i.v. immunization. The blocking effect of s.c. injection is not dependent on continuing viability of the promastigotes, as it can be induced equally readily with heat-killed, formalin-fixed, or sonicated parasites. The phenomenon extends to mouse strains genetically resistant as well as susceptible to L. major infection and, in congenic mice of BALB background, is independent of the major histocompatibility (H-2) gene complex. 相似文献
6.
7.
Magnesium (Mg) is a promising biodegradable metallic material for applications in cellular/tissue engineering and biomedical implants/devices. To advance clinical translation of Mg-based biomaterials, we investigated the effects and mechanisms of Mg degradation on the proliferation and pluripotency of human embryonic stem cells (hESCs). We used hESCs as the in vitro model system to study cellular responses to Mg degradation because they are sensitive to toxicants and capable of differentiating into any cell types of interest for regenerative medicine. In a previous study when hESCs were cultured in vitro with either polished metallic Mg (99.9% purity) or pre-degraded Mg, cell death was observed within the first 30 hours of culture. Excess Mg ions and hydroxide ions induced by Mg degradation may have been the causes for the observed cell death; hence, their respective effects on hESCs were investigated for the first time to reveal the potential mechanisms. For this purpose, the mTeSR®1 hESC culture media was either modified to an alkaline pH of 8.1 or supplemented with 0.4–40 mM of Mg ions. We showed that the initial increase of media pH to 8.1 had no adverse effect on hESC proliferation. At all tested Mg ion dosages, the hESCs grew to confluency and retained pluripotency as indicated by the expression of OCT4, SSEA3, and SOX2. When the supplemental Mg ion dosages increased to greater than 10 mM, however, hESC colony morphology changed and cell counts decreased. These results suggest that Mg-based implants or scaffolds are promising in combination with hESCs for regenerative medicine applications, providing their degradation rate is moderate. Additionally, the hESC culture system could serve as a standard model for cytocompatibility studies of Mg in vitro, and an identified 10 mM critical dosage of Mg ions could serve as a design guideline for safe degradation of Mg-based implants/scaffolds. 相似文献
8.
Cryptococcus neoformans is an encapsulated basidiomycetous yeast commonly associated with pigeon droppings and soil. The opportunistic pathogen infects humans through the respiratory system and the metabolic implications of C. neoformans infection have yet to be explored. Studying the metabolic profile associated with the infection could lead to the identification of important metabolites associated with pulmonary infection. Therefore, the aim of the study was to simulate cryptococcal infection at the primary site of infection, the lungs, and to identify the metabolic profile and important metabolites associated with the infection at low and high multiplicity of infections (MOI). The culture supernatant of lung epithelial cells infected with C. neoformans at MOI of 10 and 100 over a period of 18 hours were analysed using gas chromatography mass spectrometry. The metabolic profiles obtained were further analysed using multivariate analysis and the pathway analysis tool, MetaboAnalyst 2.0. Based on the results from the multivariate analyses, ten metabolites were selected as the discriminatory metabolites that were important in both the infection conditions. The pathways affected during early C. neoformans infection of lung epithelial cells were mainly the central carbon metabolism and biosynthesis of amino acids. Infection at a higher MOI led to a perturbance in the β-alanine metabolism and an increase in the secretion of pantothenic acid into the growth media. Pantothenic acid production during yeast infection has not been documented and the β-alanine metabolism as well as the pantothenate and CoA biosynthesis pathways may represent underlying metabolic pathways associated with disease progression. Our study suggested that β-alanine metabolism and the pantothenate and CoA biosynthesis pathways might be the important pathways associated with cryptococcal infection. 相似文献
9.
Yeasts being simple eukaryotes are established genetic systems that are often employed to solve important biological questions. Recently, it has become evident that certain cell death programs exist in these unicellular organisms. For example, it has been shown recently that strains of the fission yeast Schizosaccharomyces pombe deficient in triacylglycerol synthesis undergo cell death with prominent apoptotic markers. This minireview is intended to discuss key developments that have rendered fission yeast useful both as a tool and as a model for apoptosis and lipoapoptosis research. It is attempted to delineate a putative signaling pathway leading to the execution of lipoapoptosis in the fission yeast. Although in its infancy, apoptosis research in the fission yeast promises exciting breakthroughs in the near future. 相似文献
10.
H D Van Liew 《Journal of applied physiology》1968,25(5):575-580