首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21469篇
  免费   1843篇
  国内免费   2443篇
  25755篇
  2024年   58篇
  2023年   214篇
  2022年   558篇
  2021年   851篇
  2020年   664篇
  2019年   849篇
  2018年   854篇
  2017年   666篇
  2016年   905篇
  2015年   1353篇
  2014年   1516篇
  2013年   1653篇
  2012年   2067篇
  2011年   1830篇
  2010年   1151篇
  2009年   1062篇
  2008年   1292篇
  2007年   1158篇
  2006年   1051篇
  2005年   920篇
  2004年   805篇
  2003年   769篇
  2002年   620篇
  2001年   408篇
  2000年   363篇
  1999年   364篇
  1998年   195篇
  1997年   197篇
  1996年   177篇
  1995年   136篇
  1994年   135篇
  1993年   109篇
  1992年   124篇
  1991年   120篇
  1990年   85篇
  1989年   75篇
  1988年   57篇
  1987年   57篇
  1986年   46篇
  1985年   54篇
  1984年   29篇
  1983年   28篇
  1982年   16篇
  1981年   13篇
  1979年   13篇
  1978年   18篇
  1975年   7篇
  1974年   8篇
  1972年   12篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Plant somatic cells have the capability to switch their cell fates from differentiated to undifferentiated status under proper culture conditions, which is designated as totipotency. As a result, plant cells can easily regenerate new tissues or organs from a wide variety of explants. However, the mechanism by which plant cells have such remarkable regeneration ability is still largely unknown. In this study, we used a set of meristem-specific marker genes to analyze the patterns of stem cell differentiation in the processes of somatic embryogenesis as well as shoot or root organogenesis in vitro. Our studies furnish preliminary and important information on the patterns of the de novo stem cell differentiation during various types of in vitro organogenesis.  相似文献   
2.
A recombinant cell line (NIH3T3:pLtkSN) was made by infecting parental cells (NIH3T3) with a recombinant retrovirus (pLtkSN) encoding herpes simplex virus thymidine kinase (HSVtk) gene. The cells expressing HSVtk (NIH3T3:pLtkSN) grew 2.3 times more than the parental cells (NIH3T3) in Dulbecco's Modified Eagles Media containing 10% (v/v) horse serum. The NIH3T3:pLtkSN cells also showed a significant enhancement in the maximal cell concentration and the specific growth rate even at 2.5% serum concentration. The specific O2 uptake rate of NIH3T3 was 2.1 times greater than that of NIH3T3:pLtkSN. Under both O2-limited and O2-unlimited conditions, it appears that HSVtk plays an important role in enhancing the growth characteristics of animal cells.  相似文献   
3.
4.
Interplant communication has been widely demonstrated in plants, especially in herbaceous plants. In this study, mechanical damage was shown to affect the levels of pyrochatechol, chlorogenic acid, gallic acid and p-hydroxyl benzoic acid in poplar (Populus simonii × P. pyramidalis ‘Opera 8277’) cuttings, indicating the activation of defense response. In neighboring intact cuttings, the levels of those phenolics also varied when compared to the control, suggesting the interplant communication between poplar cuttings. Three volatiles, methyl jasmonate, methyl salicylate and benzothiazole, were detected in volatiles emitted from mechanically damaged poplar cuttings. All of them can induce changes in the levels of four phenolics. Therefore, they could act as airborne signals between P. simonii × P. pyramidalis ‘Opera 8277’ cuttings. The different change patterns of phenolic contents induced by different volatiles imply that the defense response activated in neighboring plants may be regulated by multiple signaling pathways. The results also suggest that the entire defense response of plants involves a variety of airborne signals in wound-induced volatiles.  相似文献   
5.

Background  

Meiotic prophase is a critical stage in sexual reproduction. Aberrant chromosome recombination during this stage is a leading cause of human miscarriages and birth defects. However, due to the experimental intractability of mammalian gonads, only a very limited number of meiotic genes have been characterized. Here we aim to identify novel meiotic genes important in human reproduction through computational mining of cross-species and cross-sex time-series expression data from budding yeast, mouse postnatal testis, mouse embryonic ovary, and human fetal ovary.  相似文献   
6.
Rabbit alveolar macrophages exhibit a chemiluminescent response which is associated with phagocytosis of zymosan and polystyrene-butadiene particles. The chemiluminescence reaches a peak in 15 to 25 minutes and then gradually diminishes over the next 1 to 3 hours. During the time of maximal light emission there appears to be no actual uptake of particles, but the response is dependent upon the particle concentration. The metabolic inhibitor, DNP (2,4-dinitrophenol), causes a rapid inhibition of the chemiluminescent response. The addition of ATP to the medium prior to exposure of the cells to particles causes the chemiluminescent response to be greatly diminished, i.e., 0.3mM ATP virtually abolishes the response. These experiments suggest that some metabolic response of the cell to phagocytosis is responsible for the chemiluminescence.  相似文献   
7.
8.
9.
Phenol compounds, such as propofol and thymol, have been shown to act on the GABAA receptor through interaction with specific sites of this receptor. In addition, considering the high lipophilicity of phenols, it is possible that their pharmacological activity may also be the result of the interaction of phenol molecules with the surrounding lipid molecules, modulating the supramolecular organization of the receptor environment. Thus, in the present study, we study the pharmacological activity of some propofol- and thymol-related phenols on the native GABAA receptor using primary cultures of cortical neurons and investigate the effects of these compounds on the micro viscosity of artificial membranes by means of fluorescence anisotropy. The phenol compounds analyzed in this article are carvacrol, chlorothymol, and eugenol. All compounds were able to enhance the binding of [3H]flunitrazepam with EC50 values in the micromolar range and to increase the GABA-evoked Cl? influx in a concentration-dependent manner, both effects being inhibited by the competitive GABAA antagonist bicuculline. These results strongly suggest that the phenols studied are positive allosteric modulators of this receptor. Chlorothymol showed a bell-type effect, reducing its positive effect at concentrations >100 μM. The concentrations necessary to induce positive allosteric modulation of GABAA receptor were not cytotoxic. Although all compounds were able to decrease the micro viscosity of artificial membranes, chlorothymol displayed a larger effect which could explain its effects on [3H]flunitrazepam binding and on cell viability at high concentrations. Finally, it is suggested that these compounds may exert depressant activity on the central nervous system and potentiate the effects of general anesthetics.  相似文献   
10.
This paper studies a Non-convex State-dependent Linear Quadratic Regulator (NSLQR) problem, in which the control penalty weighting matrix in the performance index is state-dependent. A necessary and sufficient condition for the optimal solution is established with a rigorous proof by Euler-Lagrange Equation. It is found that the optimal solution of the NSLQR problem can be obtained by solving a Pseudo-Differential-Riccati-Equation (PDRE) simultaneously with the closed-loop system equation. A Comparison Theorem for the PDRE is given to facilitate solution methods for the PDRE. A linear time-variant system is employed as an example in simulation to verify the proposed optimal solution. As a non-trivial application, a goal pursuit process in psychology is modeled as a NSLQR problem and two typical goal pursuit behaviors found in human and animals are reproduced using different control weighting . It is found that these two behaviors save control energy and cause less stress over Conventional Control Behavior typified by the LQR control with a constant control weighting , in situations where only the goal discrepancy at the terminal time is of concern, such as in Marathon races and target hitting missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号