首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   60篇
  国内免费   1篇
  2023年   3篇
  2022年   12篇
  2021年   18篇
  2020年   5篇
  2019年   9篇
  2018年   8篇
  2017年   8篇
  2016年   14篇
  2015年   28篇
  2014年   19篇
  2013年   36篇
  2012年   34篇
  2011年   37篇
  2010年   21篇
  2009年   20篇
  2008年   30篇
  2007年   21篇
  2006年   26篇
  2005年   20篇
  2004年   20篇
  2003年   20篇
  2002年   20篇
  2001年   26篇
  2000年   16篇
  1999年   27篇
  1998年   14篇
  1997年   10篇
  1996年   10篇
  1995年   6篇
  1994年   3篇
  1993年   5篇
  1992年   9篇
  1991年   10篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   6篇
  1986年   9篇
  1985年   10篇
  1984年   9篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1974年   9篇
  1970年   2篇
排序方式: 共有659条查询结果,搜索用时 31 毫秒
1.
The DNA damage and stress response pathways interact to regulate cellular responses to genotoxins and environmental stresses. How these pathways interact in Schizosaccharomyces pombe is not well understood. We demonstrate that osmotic stress suppresses the DNA damage sensitivity of checkpoint mutants, and that this occurs through three distinct cell cycle delays. A delay in G2/M is dependent on Srk1. Progression through mitosis is halted by the Mad2‐dependent spindle checkpoint. Finally, cytokinesis is impaired by modulating Cdc25 expression. These three delays, imposed by osmotic stress, together compensate for the loss of checkpoint signalling.  相似文献   
2.
3.
4.
Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to rescue a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.  相似文献   
5.
The Schwartz and Cantor technique for releasing and fractionating megabase-sized DNA from agarose-embedded cells is beginning to bridge the gap in resoluation between classical genetics and current molecular DNA techniques, particularly in mammalian systems. As yet no conditions have been described for preparing plant DNA that is of sufficient length to allow similar long-range restriction mapping experiments in plant systems. In this report, we describe the application of the Schwartz and Cantor technique for preparing high molecular weight DNA from embedded tomato leaf protoplasts, as well as conditions for generating and fractionating large restriction fragments, by field inversion gel electrophoresis (FIGE). The bulk of DNA released from lysed protoplasts was at least 2 Mb in size and amenable to restriction digestion as shown by hybridizing Southern blots with, among others, a probe for the Adh-2 gene of tomato. Restriction fragments as large as 700 kb were detected. Chloroplast DNA is isolated intact, amenable to restriction analysis and, in its native form, not mobile in FIGE.  相似文献   
6.
With a view to cloning the root-knot nematode resistance gene Mi in tomato by chromosome walking, we have developed a molecular probe for the tightly linked acid phosphatase-1 (Aps-1) locus. The acid phosphatase-1 allozyme (APS-11), encoded by the Aps-1 1 allele originating from Lycopersicon peruvianum, was purified to apparent homogeneity from tomato roots and suspension cells. Microsequencing of CNBr and tryptic peptides generated from APS-11 provided a partial amino acid sequence, which accounted for approximately 23% of the protein and revealed two stretches of homology with soybean proteins KSH3 and VSP27, comprising 22 matches within 26 amino acid residues. The partial amino acid sequence information enabled us to isolate a 2.4 kb genomic Aps-1 1 sequence by means of the polymerase chain reaction (PCR), primed by degenerate pools of oligodeoxyribonucleotides, synthesized on the basis of the amino acid sequences. Synthesis of the 2.4 kb PCR product was specific for genomic templates carrying the L. peruvianum Aps-1 1 allele. Crucial to the priming specificity and the synthesis of the 2.4 kb genomic sequence was the use of degenerate primer pools in which the number of different primer species was limited by incorporating deoxyinosine phosphate residues at three and four base ambiguities. In using cDNA as a template, a 490 bp sequence was obtained, indicating a high proportion of intron sequences in the 2.4 kb genomic Aps-1 1 sequence. The Aps-1 1 origin of the PCR product was confirmed by RFLP (restriction fragment length polymorphism) analysis, using both a chromosome 6 substitution line and a pair of nearly isogenic lines, differing for a small chromosomal region around the Aps-1/Mi loci.  相似文献   
7.
A dominant allele at the Mi locus on chromosome 6 of tomato (Lycopersicon esculentum Mill) confers resistance to three species of root-knot nematodes (Meloidogyne). The resistance, which is associated with a localized necrotic response, was originally introduced into tomato from the wild species Lycopersicon peruvianum. As a step towards the molecular cloning of Mi, we have identified closely linked DNA markers from both cDNA and genomic DNA libraries as restriction fragment length polymorphisms (RFLPs). DNA from tomato populations segregating for nematode resistance was analyzed to generate a high-resolution genetic map of this region. Additional information on gene order was obtained by comparing the size of the introgressed L. peruvianum chromosomal segment within a collection of nematode-resistant tomato lines. Among the four cDNA markers that are tightly linked to Mi, three are dominant, i.e. L. peruvianum-specific. One cDNA marker corresponds to a gene family comprising 20-30 members, one of which is diagnostic for all nematode-resistant genotypes tested. The presence of non-homologous sequences around the Mi gene may contribute to the suppression of recombination in this region of the genome in crosses heterozygous for Mi. The potential of 'walking' from closely linked markers to Mi is discussed.  相似文献   
8.
Summary Thyroid glands of young rats were incubated for 3 h in Eagle's solution supplemented with 5-hydroxy-l-tryptophan (5-HTP) or with serotonin. Following control incubations or incubations with serotonin, no serotonin could be demonstrated in C cells using immunocytochemical techniques. However, serotonin was demonstrated in the secretory granules of all C cells following incubation with 5-HTP. The secretory function of C cells was evaluated by ultrastructural and immunocytochemical studies, and by calcitonin radioimmunoassays of the incubation medium. Following incubation with 5-HTP, the secretory function of the majority of C cells was inhibited, and calcitonin levels in the media were decreased. Incubation with serotonin produced an increased secretory function of C cells and higher calcitonin levels in the media. The results indicate that serotonin and its direct precursor, 5-HTP, affect calcitonin secretion by rat thyroid C cells by distinct mechanisms.  相似文献   
9.
Summary Plant cells are sensitive to the antibiotic bleomycin, a DNA damaging glycopeptide. A bleomycin resistance determinant, located on transposon Tn5 and functional in bacteria, has been cloned in a plant expression vector and introduced into Nicotiana plumbaginifolia using Agrobacterium tumefaciens. The expression of this determinant in plant cells confers resistance to bleomycin and allows selection of transformed plant cells.  相似文献   
10.
Type X collagen is a homotrimeric, short chain, nonfibrillar collagen that is expressed exclusively by hypertrophic chondrocytes at the sites of endochondral ossification. The distribution and pattern of expression of the type X collagen gene (COL10A1) suggests that mutations altering the structure and synthesis of the protein may be responsible for causing heritable forms of chondrodysplasia. We investigated whether mutations within the human COL10A1 gene were responsible for causing the disorders achondroplasia, hypochondroplasia, pseudoachondroplasia, and thanatophoric dysplasia, by analyzing the coding regions of the gene by using PCR and the single-stranded conformational polymorphism technique. By this approach, seven sequence changes were identified within and flanking the coding regions of the gene of the affected persons. We demonstrated that six of these sequence changes were not responsible for causing these forms of chondrodysplasia but were polymorphic in nature. The sequence changes were used to demonstrate discordant segregation between the COL10A1 locus and achondroplasia and pseudoachondroplasia, in nuclear families. This lack of segregation suggests that mutations within or near the COL10A1 locus are not responsible for these disorders. The seventh sequence change resulted in a valine-to-methionine substitution in the carboxyl-terminal domain of the molecule and was identified in only two hypochondroplasic individuals from a single family. Segregation analysis in this family was inconclusive, and the significance of this substitution remains uncertain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号