首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   6篇
  2012年   3篇
  2011年   2篇
  2010年   6篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1984年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
Fungal endophytic communities and potential host preference of root-inhabiting fungi of boreal forest understory plants are poorly known. The objective of this study was to find out whether two neighboring plant species, Deschampsia flexuosa (Poaceae) and Trientalis europaea (Primulaceae), share similar root fungal endophytic communities and whether the communities differ between two sites. The study was carried out by analysis of pure culture isolates and root fungal colonization percentages. A total of 84 isolates from D. flexuosa and 27 isolates from T. europaea were obtained. The roots of D. flexuosa harbored 16 different isolate types based on macromorphological characteristics, whereas only 4 isolate types were found in T. europaea. The root colonization by dark septate and hyaline septate hyphae correlated with isolate numbers being higher in D. flexuosa compared to T. europaea. The different isolate types were further identified on the basis of internal transcribed spacer sequence and phylogenetic analysis. An isolate type identified as dark septate endophyte Phialocephala fortinii colonized 50 % of the T. europaea and 21 % of the D. flexuosa specimens. In addition, Meliniomyces variabilis, Phialocephala sphaeroides, and Umbelopsis isabellina were found colonizing the grass, D. flexuosa, for the first time and Mycena sp. was confirmed as an endophyte of D. flexuosa. Site-specific differences were observed in the abundance and diversity of endophytic fungi in the roots of both study plants, but the differences were not as predominant as those between plant species. It is concluded that D. flexuosa harbors both higher amount and more diverse community of endophytic fungi in its roots compared to T. europaea.  相似文献   
2.
An instrumentation and automation system for a side-vented pan coater with a novel air-flow rate measurement system for monitoring the film-coating process of tablets was designed and tested. The instrumented coating system was tested and validated by film-coating over 20 pilot-scale batches of tablets with aqueous-based hydroxypropyl methylcellulose (HPMC). Thirteen different process parameters were continuously measured and monitored, and the most significant ones were logged for analysis. Laser profilometry was used to measure the surface roughness of the coated tablets. The instrumentation system provided comprehensive and quantitative information on the process parameters monitored. The measured process parameters and the responses of the film-coated tablet batches showed that the coating process is reproducible. The inlet air-flow rate influenced the coating process and the subsequent quality of the coated tablets. Increasing the inlet flow rate accelerated the drying of the tablet surface. At high inlet flow rate, obvious film-coating defects (ie, unacceptable surface roughness of the coated tablets) were observed and the loss of coating material increased. The instrumented and automated pancoating system described, including historical data storage capability and a novel air-flow measurement system, is a useful tool for controlling and characterizing the tablet film-coating process. Monitoring of critical process parameters increases the overall coating process efficiency and predictability.  相似文献   
3.
Seven of the 45 subunits of mitochondrial NADH:ubiquinone oxidoreductase (complex I) are mitochondrially encoded and have been shown to harbor pathogenic mutations. We modeled the human disease-associated mutations A4136G/ND1-Y277C, T4160C/ND1-L285P and C4171A/ND1-L289M in a highly conserved region of the fourth matrix-side loop of the ND1 subunit by mutating homologous amino acids and surrounding conserved residues of the NuoH subunit of Escherichia coli NDH-1. Deamino-NADH dehydrogenase activity, decylubiquinone reduction kinetics, hexammineruthenium (HAR) reductase activity, and the proton pumping efficiency of the enzyme were assayed in cytoplasmic membrane preparations.Among the human disease-associated mutations, a statistically significant 22% decrease in enzyme activity was observed in the NuoH-L289C mutant and a 29% decrease in the double mutant NuoH-L289C/V297P compared with controls. The adjacent mutations NuoH-D295A and NuoH-R293M caused 49% and 39% decreases in enzyme activity, respectively. None of the mutations studied significantly affected the Km value of the enzyme for decylubiquinone or the amount of membrane-associated NDH-1 as estimated from the HAR reductase activity. In spite of the decrease in enzyme activity, all the mutant strains were able to grow on malate, which necessitates sufficient NDH-1 activity. The results show that in ND1/NuoH its fourth matrix-side loop is probably not directly involved in ubiquinone binding or proton pumping but has a role in modifying enzyme activity.  相似文献   
4.

Introduction

Rifampicin has been used as adjunctive therapy in Staphylococcus aureus bacteraemia (SAB) with a deep infection focus. However, data for prognostic impact of rifampicin therapy is unestablished including the optimal initiation time point. We studied the impact of rifampicin therapy and the optimal initiation time for rifampicin treatment on prognosis in methicillin-sensitive S. aureus bacteraemia with a deep infection.

Methods

Retrospective, multicentre study in Finland including 357 SAB patients with a deep infection focus. Patients with alcoholism, liver disease or patients who died within 3 days were excluded. Patients were categorised according to duration of rifampicin therapy and according to whether rifampicin was initiated early (within 7 days) or late (7 days after) after the positive blood cultures. Primary end point was 90 days mortality.

Results

Twenty-seven percent of patients received no rifampicin therapy, 14% received rifampicin for 1-13 days whereas 59% received rifampicin ≥14 days. The 90 day mortality was; 26% for patients treated without rifampicin, 16% for rifampicin therapy of any length and 10% for early onset rifampicin therapy ≥14 days. Lack of rifampicin therapy increased (OR 1.89, p=0.026), rifampicin of any duration decreased (OR 0.53, p=0.026) and rifampicin therapy ≥14 days with early onset lowered the risk for a fatal outcome (OR 0.33, p<0.01) during 90 days follow-up.

Conclusion

Rifampicin adjunctive therapy for at least 14 days and initiated within 7 days of positive blood culture associated with improved outcome among SAB patients with a deep infection.  相似文献   
5.
Most lysines in type IV and VI collagens are hydroxylated and glycosylated, but the functions of these unique galactosylhydroxylysyl and glucosylgalactosylhydroxylysyl residues are poorly understood. The formation of glycosylated hydroxylysines is catalyzed by multifunctional lysyl hydroxylase 3 (LH3) in vivo, and we have used LH3-manipulated mice and cells as models to study the function of these carbohydrates. These hydroxylysine-linked carbohydrates were shown recently to be indispensable for the formation of basement membranes (Ruotsalainen, H., Sipil?, L., Vapola, M., Sormunen, R., Salo, A. M., Uitto, L., Mercer, D. K., Robins, S. P., Risteli, M., Aszodi, A., F?ssler, R., and Myllyl?, R. (2006) J. Cell Sci. 119, 625-635). Analysis of LH3 knock-out embryos and cells in this work indicated that loss of glycosylated hydroxylysines prevents the intracellular tetramerization of type VI collagen and leads to impaired secretion of type IV and VI collagens. Mice lacking the LH activity of LH3 produced slightly underglycosylated type IV and VI collagens with abnormal distribution. The altered distribution and aggregation of type VI collagen led to similar ultrastructural alterations in muscle to those detected in collagen VI knockout and some Ullrich congenital muscular dystrophy patients. Our results provide new information about the function of hydroxylysine-linked carbohydrates of collagens, indicating that they play an important role in the secretion, assembly, and distribution of highly glycosylated collagen types.  相似文献   
6.
Mammalian mitochondrial DNA (mtDNA) is a high-copy maternally inherited genome essential for aerobic energy metabolism. Mutations in mtDNA can lead to heteroplasmy, the co-occurence of two different mtDNA variants in the same cell, which can segregate in a tissue-specific manner affecting the onset and severity of mitochondrial dysfunction. To investigate mechanisms regulating mtDNA segregation we use a heteroplasmic mouse model with two polymorphic neutral mtDNA haplotypes (NZB and BALB) that displays tissue-specific and age-dependent selection for mtDNA haplotypes. In the hematopoietic compartment there is selection for the BALB mtDNA haplotype, a phenotype that can be modified by allelic variants of Gimap3. Gimap3 is a tail-anchored member of the GTPase of the immunity-associated protein (Gimap) family of protein scaffolds important for leukocyte development and survival. Here we show how the expression of two murine Gimap3 alleles from Mus musculus domesticus and M. m. castaneus differentially affect mtDNA segregation. The castaneus allele has incorporated a uORF (upstream open reading frame) in-frame with the Gimap3 mRNA that impairs translation and imparts a negative effect on the steady-state protein abundance. We found that quantitative changes in the expression of Gimap3 and the paralogue Gimap5, which encodes a lysosomal protein, affect mtDNA segregation in the mouse hematopoietic tissues. We also show that Gimap3 localizes to the endoplasmic reticulum and not mitochondria as previously reported. Collectively these data show that the abundance of protein scaffolds on the endoplasmic reticulum and lysosomes are important to the segregation of the mitochondrial genome in the mouse hematopoietic compartment.  相似文献   
7.
Lysyl hydroxylase 3 (LH3), the multifunctional enzyme associated with collagen biosynthesis that possesses lysyl hydroxylase and collagen glycosyltransferase activities, has been characterized in the extracellular space in this study. Lysine modifications are known to occur in the endoplasmic reticulum (ER) prior to collagen triple-helix formation, but in this study we show that LH3 is also present and active in the extracellular space. Studies with in vitro cultured cells indicate that LH3, in addition to being an ER resident, is secreted from the cells and is found both in the medium and on the cell surface associated with collagens or other proteins with collagenous sequences. Furthermore, in vivo, LH3 is present in serum. LH3 protein levels correlate with the galactosylhydroxylysine glucosyltransferase (GGT) activity of mouse tissues. This, together with other data, indicates that LH3 is responsible for GGT activity in the tissues and that GGT activity assays can be used to quantify LH3 in tissues. LH3 in vivo is located in two compartments, in the ER and in the extracellular space, and the partitioning varies with tissue type. In mouse kidney the enzyme is located mainly intracellularly, whereas in mouse liver it is located solely in the extracellular space. The extracellular localization and the ability of LH3 to modify lysyl residues of extracellular proteins in their native, nondenaturated conformation reveals a new dynamic in extracellular matrix remodeling, suggesting a novel mechanism for adjusting the amount of hydroxylysine and hydroxylysine-linked carbohydrates in collagenous proteins.  相似文献   
8.
Cholesterol substitution increases the structural heterogeneity of caveolae   总被引:1,自引:0,他引:1  
Caveolin-1 binds cholesterol and caveola formation involves caveolin-1 oligomerization and cholesterol association. The role of cholesterol in caveolae has so far been addressed by methods that compromise membrane integrity and abolish caveolar invaginations. To study the importance of sterol specificity for the structure and function of caveolae, we replaced cholesterol in mammalian cells with its immediate precursor desmosterol by inhibiting 24-dehydrocholesterol reductase. Desmosterol could substitute for cholesterol in maintaining cell growth, membrane integrity, and preserving caveolar invaginations. However, in desmosterol cells the affinity of caveolin-1 for sterol and the stability of caveolin oligomers were decreased. Moreover, caveolar invaginations became more heterogeneous in dimensions and in the number of caveolin-1 molecules per caveola. Despite the altered caveolar structure, caveolar ligand uptake was only moderately inhibited. We found that in desmosterol cells, Src kinase phosphorylated Cav1 at Tyr(14) more avidly than in cholesterol cells. Taken the role of Cav1 Tyr(14) phosphorylation in caveolar endocytosis, this may help to preserve caveolar uptake in desmosterol cells. We conclude that a sterol C24 double bond interferes with caveolin-sterol interaction and perturbs caveolar morphology but facilitates Cav1 Src phosphorylation and allows caveolar endocytosis. More generally, substitution of cholesterol by a structurally closely related sterol provides a method to selectively modify membrane protein-sterol affinity, structure and function of cholesterol-dependent domains without compromising membrane integrity.  相似文献   
9.
The molecular nature of the glomerular slit diaphragm, the site of renal ultrafiltration, has until recently remained a mystery. However, the identification of the gene affected in congenital nephrotic syndrome has revealed the presence of a novel protein, possibly specific for the slit diaphragm. This protein, which has been termed nephrin, is a transmembrane protein that probably forms the main building block of an isoporous zipper-like slit diaphragm filter structure. Defects in nephrin lead to abnormal or absent slit diaphragm leading to massive proteinuria and renal failure. The discovery of nephrin sheds new light on the glomerular filtration barrier, provides new insight into the pathomechanisms of proteinuria, and even opens up possibilities for the development of novel therapies for this common and severe kidney complication.  相似文献   
10.

Aims

Root fungal relationships in forest understory may be affected by tree harvesting. Deschampsia flexuosa forms a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi functioning in nutrient uptake, and a more loose association with dark septate endophytic (DSE) fungi. We asked how harvesting affects fungal colonisations and whether DSE is more prone to change than AM.

Methods

Deschampsia flexuosa plants were sampled close to a control or a cut tree after top-canopy harvesting in a primary successional site. Colonisations were studied using light microscopy. Shoot N%, vegetation cover and soil nutrients were determined.

Results

Tree harvesting did not affect vegetation and soil parameters, except potassium (K+) increasing near cut trees. AM colonisation did not change, while DSE increased. Shoot N% increased with increasing DSE near cut trees. Hyaline septate (HSE) hyphae and soil K+ and magnesium (Mg2+) were positively correlated near control trees. Lichen cover and HSE correlated negatively.

Conclusions

DSE colonisation increased but AM did not change after harvesting. Positive correlation of DSE with shoot N% near cut trees may suggest a role for DSE in favouring plant nitrogen uptake after disturbance in an open microsite. HSE may play a role in K+ and Mg2+ uptake.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号