首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   15篇
  2017年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   7篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
2.
3.
In Arabidopsis thaliana, functionally diverse small RNA (smRNA) pathways bring about decreased RNA accumulation of target genes via several different mechanisms. Cytological experiments have suggested that the processing of microRNAs (miRNAs) and heterochromatic small interfering RNAs (hc-siRNAs) occurs within a specific nuclear domain that can present Cajal Body (CB) characteristics. It is unclear whether single or multiple smRNA-related domains are found within the same CB and how specialization of the smRNA pathways is determined within this specific sub-compartment. To ascertain whether nuclear smRNA centers are spatially related, we localized key proteins required for siRNA or miRNA biogenesis by immunofluorescence analysis. The intranuclear distribution of the proteins revealed that hc-siRNA, miRNA and trans-acting siRNA (ta-siRNA) pathway proteins accumulate and colocalize within a sub-nuclear structure in the nucleolar periphery. Furthermore, colocalization of miRNA- and siRNA-pathway members with CB markers, and reduced wild-type localization patterns in CB mutants indicates that proper nuclear localization of these proteins requires CB integrity. We hypothesize that these nuclear domains could be important for RNA silencing and may partially explain the functional redundancies and interactions among components of the same protein family. The CB may be the place in the nucleus where Dicer-generated smRNA precursors are processed and assigned to a specific pathway, and where storage, recycling or assembly of RNA interference components takes place.  相似文献   
4.
5.
6.
The silencing phenotype in Arabidopsis thaliana lines with an inverted repeat transgene under the control of a phloem-specific promoter was manifested in regions around veins due to a mobile signal of silencing. Genetic analysis implicates RNA-DEPENDENT RNA POLYMERASE2 (RDR2) and an RNA polymerase IVa subunit gene (NRPD1a) in the signaling mechanism. We also identified an SNF2 domain-containing protein (CLASSY1) that acts together with RDR2 and NRPD1a in the spread of transgene silencing and in the production of endogenous 24-nucleotide short interfering RNAs (siRNAs). Cytochemical analysis indicates that CLASSY1 may act in the nucleus with NRPD1a and RDR2 in the upstream part of RNA silencing pathways that generate a double-stranded RNA substrate for Dicer-like (DCL) nucleases. DCL3 and ARGONAUTE4 act in a downstream part of the pathway, leading to endogenous 24-nucleotide siRNA production, but are not required for intercellular signaling. From genetic analysis, we conclude that another downstream part of the pathway associated with intercellular signaling requires DCL4 and at least one other protein required for 21-nucleotide trans-acting siRNAs. We interpret the effect of polymerase IVa and trans-acting siRNA pathway mutations in terms of a modular property of RNA silencing pathways.  相似文献   
7.
In all eukaryotes, nuclear DNA-dependent RNA polymerases I, II and III synthesize the myriad RNAs that are essential for life. Remarkably, plants have evolved two additional multisubunit RNA polymerases, RNA polymerases IV and V, which orchestrate non-coding RNA-mediated gene silencing processes affecting development, transposon taming, antiviral defence and allelic crosstalk. Biochemical details concerning the templates and products of RNA polymerases IV and V are lacking. However, their subunit compositions reveal that they evolved as specialized forms of RNA polymerase II, which provides the unique opportunity to study the functional diversification of a eukaryotic RNA polymerase family.  相似文献   
8.

Background

Small RNAs generated by RNA polymerase IV (Pol IV) are the most abundant class of small RNAs in flowering plants. In Arabidopsis thaliana Pol IV-dependent short interfering (p4-si)RNAs are imprinted and accumulate specifically from maternal chromosomes in the developing seeds. Imprinted expression of protein-coding genes is controlled by differential DNA or histone methylation placed in gametes. To identify epigenetic factors required for maternal-specific expression of p4-siRNAs we analyzed the effect of a series of candidate mutations, including those required for genomic imprinting of protein-coding genes, on uniparental expression of a representative p4-siRNA locus.

Results

Paternal alleles of imprinted genes are marked by DNA or histone methylation placed by DNA METHYLTRANSFERASE 1 or the Polycomb Repressive Complex 2. Here we demonstrate that repression of paternal p4-siRNA expression at locus 08002 is not controlled by either of these mechanisms. Similarly, loss of several chromatin modification enzymes, including a histone acetyltransferase, a histone methyltransferase, and two nucleosome remodeling proteins, does not affect maternal expression of locus 08002. Maternal alleles of imprinted genes are hypomethylated by DEMETER DNA glycosylase, yet expression of p4-siRNAs occurs irrespective of demethylation by DEMETER or related glycosylases.

Conclusions

Differential DNA methylation and other chromatin modifications associated with epigenetic silencing are not required for maternal-specific expression of p4-siRNAs at locus 08002. These data indicate that there is an as yet unknown epigenetic mechanism causing maternal-specific p4-siRNA expression that is distinct from the well-characterized mechanisms associated with DNA methylation or the Polycomb Repressive Complex 2.  相似文献   
9.
ARGONAUTE4 (AGO4) and RNA polymerase IV (Pol IV) are required for DNA methylation guided by 24 nucleotide small interfering RNAs (siRNAs) in Arabidopsis thaliana. Here we show that AGO4 localizes to nucleolus-associated bodies along with the Pol IV subunit NRPD1b; the small nuclear RNA (snRNA) binding protein SmD3; and two markers of Cajal bodies, trimethylguanosine-capped snRNAs and the U2 snRNA binding protein U2B'. AGO4 interacts with the C-terminal domain of NRPD1b, and AGO4 protein stability depends on upstream factors that synthesize siRNAs. AGO4 is also found, along with the DNA methyltransferase DRM2, throughout the nucleus at presumed DNA methylation target sites. Cajal bodies are conserved sites for the maturation of ribonucleoprotein complexes. Our results suggest a function for Cajal bodies as a center for the assembly of an AGO4/NRPD1b/siRNA complex, facilitating its function in RNA-directed gene silencing at target loci.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号