首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   12篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   8篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   12篇
  2005年   3篇
  2004年   10篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   7篇
  1999年   6篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1986年   3篇
  1984年   1篇
  1983年   5篇
排序方式: 共有133条查询结果,搜索用时 500 毫秒
1.
Real-time monitoring of spin-trapped oxygen-derived free radicals released by the isolated ischemic and reperfused rat heart has been achieved by ESR analysis of the coronary effluents using continuous flow detection and high-speed acquisition techniques. Two nitrone spin traps 5,5-dimethyl pyrroline 1-oxide (Me2PnO) and 3,3,5,5-tetramethyl pyrroline 1-oxide (MePnO) have been separately perfused at a concentration of 40 mM during a sequence of 50 min of low-flow ischemia (1 ml/min) followed by 30 min of global ischemia and subsequent reperfusion at the control flow rate (14 ml/min). ESR spectra were sequentially obtained in 5-min or 30-s blocks during low-flow ischemia and reperfusion, respectively. 1. The results show the formation of OH. free radicals in the ischemic and reperfused heart, as demonstrated by the observation of Me2PnO-OH (aN = aH = 14.9 G; g = 2.0053) and Me4PnO-OH (aN = 15.2 G, aH = 16.8 G; g = 2.0055) spin adducts. There is no evidence of significant biological carbon-centered or peroxyl free radicals spin-adduct formation in the coronary effluents or in lipid extracts analyzed after reflow. 2. The OH. generation began 15-20 min after the onset of ischemia and was moderate, peaking at 30-40 min. During reperfusion, an intense formation of OH. spin adducts was observed, with a maximum at 30-60 s and a further gradual decrease over the following 2 min. 3. Cumulative integrated values of the amount of spin adducts released during the ischemic period show a Me2PnO-OH level fourfold greater than that of Me4PnO-OH. It was 2.5 times greater during reflow, reflecting slower kinetics with the more stable Me4PnO. 4. The original ESR detection technique developed in this study allows accurate real-time quantitative monitoring of the oxygen-derived free radicals generated during myocardial injury. It might provide a quick and reliable new means for assessing the efficacy of free-radical inhibitors.  相似文献   
2.
Spheroplasts from aerobically grown wild-type Paracoccus denitrificans cells respire with succinate despite specific inhibition of the cytochrome bc1 complex by myxothiazol. Coupled to this activity, which involves only b-type cytochromes, there is translocation of 1.5-1.9 h+/e- across the cytoplasmic membrane. Similar H+ translocation ratios are observed during oxidation of ubiquinol in spheroplasts from aerobically grown mutants of Paracoccus lacking cytochrome c oxidase, or deficient in cytochrome c, as well as in a strain of E. coli from which cytochrome d was deleted. These observations show that the cytochrome o complex is a proton pump much like cytochrome aa3 to which it is structurally related.  相似文献   
3.
Human leukocyte 5-lipoxygenase (EC 1.13.11.12) is unique among the human lipoxygenase not only in its requirement for free ionized calcium, but also in its regulation by a membrane-associated stimulatory factor, the 100,000 x g pellet. In the present study, phosphatidylcholine (PC) vesicles, in the absence of 100,000 x g pellet, exhibited a dose-dependent stimulatory activity on the 5-lipoxygenase, which was at least as effective as the 100,000 x g pellet. Furthermore, the enzyme was activated by isolated human neutrophil plasma membranes and to a lesser degree by endoplasmic reticulum. The chemoattractant peptide fMet-Leu-Phe (0.1 microM), GTP (10 microM), toxin from bacterium Bordetella pertussis (islet activating protein, 5 micrograms/ml) and their various combinations were unable to modulate the enzymatic activity of the 5-lipoxygenase. Stimulation of the 5-lipoxygenase by relatively low levels of free ionized calcium was observed both in the presence of the pellet and PC vesicles: maximal stimulation was seen at about 10 microM Ca2+. The human leukocyte leukotriene A4 synthase activity also exhibited a similar requirement for free calcium ions. The present study indicates that the membrane-associated stimulatory factor of the human leukocyte 5-lipoxygenase may be replaced by PC vesicles. Moreover, the 5-lipoxygenase and leukotriene A4 synthase activities require significantly lower Ca2+ levels for maximal activation than has been reported previously.  相似文献   
4.
Human keratinocytes in culture were labelled with 14C-dihomo-gamma-linolenic acid, 14C-arachidonic acid or 14C-eicosapentaenoic acid. All three eicosanoid precursor fatty acids were effectively incorporated into the cells. In phospholipids most of the radioactivity was recovered, in neutral lipids a substantial amount, and as free unesterified fatty acids only a minor amount. The most of the radioactivity was found in phosphatidylethanolamine which was also the major phospholipid as measured by phosphorous assay. The incorporation of dihomo-gamma-linolenic acid and arachidonic acid into lipid subfractions was essentially similar. Eicosapentaenoic acid was, however, much less effectively incorporated into phosphatidylinositol + phosphatidylserine and, correspondingly, more effectively into triacylglycerols as compared to the two other precursor fatty acids. Once incorporated, the distribution of all three precursor fatty acids was relatively stable, and only minor amounts of fatty acids were released into the culture medium during short term culture (two days). Our study demonstrates that eicosanoid precursor fatty acids are avidly taken up by human keratinocytes and esterified into membrane lipids. The clinical implication of this finding is that dietary manipulations might be employed to cause changes in the fatty acid composition of keratinocytes.  相似文献   
5.
Hormonal regulation of inositol 1,4,5-trisphosphate receptor in rat liver   总被引:4,自引:0,他引:4  
Inositol 1,4,5-trisphosphate (IP3) is a second messenger which induces Ca2+ release from an intracellular store. We have investigated the properties of the [32P]IP3 binding sites in rat liver. Two specific [32P]IP3 receptors with KD of 2.3 and 88 nM and respective capacities of 33 fmol/mg protein and 195 fmol/mg protein have been detected in a crude membrane fraction prepared from rat liver homogenate. The pretreatment of the liver with IP3-dependent hormones increased two-fold the capacity of the high affinity site. This effect was partly reversed by dibutyryl cyclic AMP. Permeabilized hepatocytes also displayed two [32P]IP3 binding sites with KD of 1.5 and 84 nM and respective capacities of 8 and 300 fmol/10(6) cells. We have measured the [32P]IP3 binding and the IP3-induced 45Ca2+ release in the same batch of permeabilized hepatocytes. In a low Mg2+ medium, the EC50 for 45Ca2+ release was in close correlation with the KD for the low affinity site. These data suggest that an equilibrium between two states of the IP3 receptor is regulated by hormone action and the low affinity state is responsible for the intracellular Ca2+ release.  相似文献   
6.
Isolated hamster lungs were labelled with 14C-arachidonic acid. When the lungs were ventillated with a respirator only a small amount of radioactivity was released to the perfusion effluent. This release was not changed significantly by pulmonary infusion of quicacrine (0.5 mM), a known inhibitor of phospholipase A2. After the perfusion about 75% of the radioactivity in the lungs was in phospholipids, mainly in phosphatidylcholine, phosphatidylethanolamine and phosphatidylinostil and to a lesser degree in phosphatidylserine and phosphatidic acid. About one fourth of the radioactivity was in neutral lipids (tri- and diacylglycerols) and as free unmetabolized 14C-arachiodonic acid. Pulmonary infusion of quinacrine increased the amount of radioactivity in diacylglycerols and phosphatidylinositol but had no effect on that in phosphatidylcholine, phosphatidylserine, phosphatidic acid and triacylglycerols. The amount of radioactivity in phosphatidylethanolamine was decreased by quinacrine and increased in the vicinity of an unidentified phospholipid-quinacrine complex. The present study indicates that the distribution of 14C-arachidonic acid in hamster lung lipids is sensitive to quinacrine. The detected changes can, however, not be explained by an overall inhibition of phospholipase A2 activities.  相似文献   
7.
8.
Arginine 54 in subunit I of cytochrome c oxidase from Paracoccus denitrificans interacts with the formyl group of heme a. Mutation of this arginine to methionine (R54M) dramatically changes the spectral properties of heme a and lowers its midpoint redox potential [Kannt et al. (1999) J. Biol. Chem. 274, 37974-37981; Lee et al. (2000) Biochemistry 39, 2989-2996; Riistama et al. (2000) Biochim. Biophys. Acta 1456, 1-4]. During anaerobic reduction of the mutant enzyme, a small fraction of heme a is reduced first along with heme a(3), while most of heme a is reduced later. This suggests that electron transfer is impaired thermodynamically due to the low redox potential of heme a but that it still takes place from Cu(A) via heme a to the binuclear site as in wild-type enzyme, with no detectable bypass from Cu(A) directly to the binuclear site. Consistent with this, the proton translocation efficiency is unaffected at 1 H(+)/e(-) in the mutant enzyme, although turnover is strongly inhibited. Time-resolved electrometry shows that when the fully reduced enzyme reacts with O(2), the fast phase of membrane potential generation during the P(R )()--> F transition is unaffected by the mutation, whereas the slow phase (F --> O transition) is strongly decelerated. In the 3e(-)-reduced mutant enzyme heme a remains oxidized due to its lowered midpoint potential, whereas Cu(A) and the binuclear site are reduced. In this case the reaction with O(2) proceeds via the P(M) state because transfer of the electron from Cu(A) to the binuclear site is delayed. The single phase of membrane potential generation in the 3e(-)-reduced mutant enzyme, which thus corresponds to the P(M)--> F transition, is decelerated, but its amplitude is comparable to that of the P(R)--> F transition. From this we conclude that the completely (4e(-)) reduced enzyme is fully capable of proton translocation.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号