首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   22篇
  2023年   2篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   13篇
  2014年   11篇
  2013年   12篇
  2012年   13篇
  2011年   13篇
  2010年   12篇
  2009年   8篇
  2008年   14篇
  2007年   11篇
  2006年   11篇
  2005年   9篇
  2004年   16篇
  2003年   5篇
  2002年   9篇
  2001年   3篇
  2000年   6篇
  1999年   7篇
  1998年   6篇
  1997年   4篇
  1996年   8篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   1篇
  1985年   2篇
  1984年   7篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   5篇
  1970年   5篇
  1967年   2篇
  1966年   3篇
排序方式: 共有279条查询结果,搜索用时 15 毫秒
1.
Effects of N-alcohols on potassium conductance in squid giant axons   总被引:1,自引:0,他引:1  
The effect of bath application of several short chain N-alcohols on voltage-dependent potassium conductance has been studied in intact giant axons of Loligo forbesi under voltage-clamp conditions. All tested alcohols (methanol, ethanol, propanol, butanol, heptanol and octanol) were found to depress potassium conductance only at concentrations much larger than those necessary to reduce sodium conductance. The efficacy of the different molecules was correlated with the carbon-chain length. In all cases the effects were found to be at least partly reversible. Low concentrations of propanol (100 mM) or heptanol (1 mM) were found to increase potassium conductance whereas higher concentrations had the usual depressing effect. The two alcohols were found to induce a slow inactivation of the potassium conductance. A detailed analysis of the time course of the turning-on of the potassium current for various pulse potentials in the presence of TTX revealed that, for membrane potential values more positive than -20 mV, the time constant of activation was reduced in the presence of propanol or heptanol. The delay which separates the change in potential and the turning-on of the potassium current, which was systematically analysed for different pulse and prepulse potential values, was increased by the two alcohols, the curve relating this delay to prepulse potential being shifted towards larger (positive) delays. This high degree of complexity in the effects on potassium conductance suggests that the alcohol molecules modify several more or less independent mechanisms associated with the turning-on of the potassium current.  相似文献   
2.
Vasoactive intestinal peptide (VIP) stimulated in a dose-dependent manner the accumulation of cAMP in human melanoma-derived cell line IGR39. The maximal effect (about 100 times the basal level) was observed with 10 nM VIP. Half-maximum cAMP production was obtained at 0.78 nM VIP. VIP-related peptides were also potent in stimulating the cAMP production in IGR39 cells. The order of potency was VIP much greater than peptide histidine-methioninamide greater than human growth-hormone-releasing factor(1-44) greater than secretin greater than glucagon. Using the same conditions, IGR37 cells, a metastasic counterpart of IGR39 cells, displayed a weak stimulation of cAMP production. After exposure of IGR39 cells to 10 nM VIP, the cAMP response to a new stimulation by VIP was strongly reduced. This desensitization of IGR39 cells to VIP was rapid (t1/2 less than 2 min) and homologous. Preincubation of IGR39 cells in the presence of native VIP induced disappearance of the VIP-binding sites at the cell surface. This phenomenon was dependent on time and VIP concentration. Maximum effect (loss of 80% of binding capacity) was obtained after exposure of the cells at 37 degrees C with a VIP concentration of 1 microM. The t1/2 of maximum disappearance was less than 2 min and the concentration of VIP giving half-maximum decrease in binding of mono[125I]iodinated VIP (125I-VIP) was 8 nM. This phenomenon was also reversible since 85% of the VIP-binding capacity could be restored in less than 1 h by incubating IGR39 cells in a VIP-free medium. The IGR39 cell line should be a useful model for further study of the structure and function of the human VIP receptor.  相似文献   
3.
Using mono[125I]iodinated vasoactive intestinal peptide (125I-VIP), a very high number of specific binding sites for VIP were identified at the surface of the human melanoma cell line IGR39. The Scatchard analysis of competitive displacement experiments between native VIP and 125I-VIP was consistent with the existence of two classes of VIP-binding sites. IGR39 cells possess 0.54 x 10(6) high-affinity sites with a dissociation constant (Kd) of 0.66 nM and 1.3 x 10(6) sites of moderate affinity with a Kd of 4.7 nM. Pharmacological studies indicated that the order of potency in inhibiting 125I-VIP binding of the VIP/secretin family peptides was VIP much greater than peptide histidine methioninamide greater than human growth-hormone-releasing factor(1-44) greater than secretin. Glucagon has no effect on the binding of the labelled peptide. By means of photoaffinity labelling a polypeptide of Mr 63,000 was characterized. The labelling of this species was completely abolished by native VIP. The order of potency of VIP-related peptides in inhibiting 125I-VIP cross-linking to its receptor was the same as in the competition experiments. The glycoprotein nature of the VIP-binding sites of IGR39 cells has been investigated by affinity chromatography on wheat-germ-agglutinin-Sepharose.  相似文献   
4.
The non-ionic detergent n-octyl-beta-D-glucopyranoside was used to solubilize the VIP (vasoactive intestinal peptide) receptor from human colonic adenocarcinoma cell line HT29-D4. The binding of monoiodinated 125I-VIP to the solubilized receptor was specific, time-dependent, and reversible. Scatchard analysis of data obtained from competitive displacement of monoiodinated 125I-VIP by native VIP suggested the presence of two classes of VIP binding sites with Kd values of 0.32 and 46.7 nM. The binding capacities of these two classes were 1.7 x 10(10) and 30.2 x 10(10) sites/mg of proteins, respectively. The solubilized receptor retained the specificity of the human VIP receptor towards the peptides of the VIP/secretin/glucagon family. The order of potency in inhibiting monoiodinated 125I-VIP binding was VIP (IC50 = 1.0 x 10(-9) M) much greater than peptide histidine methionine amide (IC50 = 10(-7) M) greater than growth hormone-releasing factor (IC50 = 3 x 10(-7) M) greater than secretin (IC50 greater than 10(-6) M); glucagon had no effect on VIP binding. The reducing agent dithiothreitol inhibited in a dose-dependent manner the binding of 125I-VIP. Covalent cross-linking experiments between the solubilized receptor and 125I-VIP showed that after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography two major and one minor polypeptides of Mr 67,000, 72,000, and 83,000 were specifically labeled. When analyzed by gel filtration, the n-octyl-beta-D-glucopyranoside-solubilized 125I-VIP-receptor complex was resolved into two major peaks with molecular mass in the range of 60-70 and 270-300 kDa. Thus, the soluble form of the VIP receptor was probably a multimeric complex in which disulfide bonds may play an important role to hold the receptor in an active configuration.  相似文献   
5.
[125I]Monoiodinated vasoactive intestinal peptide (125I-VIP) was cross-linked with human colonic adenocarcinoma cells (HT29 cells) grown as a monolayer using dithiobis(succinimidylpropionate) as cross-linking reagent. The cross-linked polypeptides were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. A major polypeptide of Mr = 67 000 was characterized and it behaved like a high-affinity binding site for VIP according to the following data. The concentration of native VIP (0.5 nM) giving half-maximum inhibition of 125I-VIP covalent cross-linking with this polypeptide was very similar to that giving half-maximum displacement of 125I-VIP on HT 29 cells (0.6 nM). Glucagon or insulin was unable to inhibit the labelling of the Mr-67 000 component. In our experimental conditions neither specific 125I-VIP binding nor covalent labelling was observed with monolayers of Madin Darby canine kidney epithelial cells (MDCK cells) or African green monkey kidney fibroblasts (Vero cells) while the Mr-67 000 polypeptide was also characterized with human rectal adenocarcinoma cells (HRT 18 cells), known to possess the VIP receptor. Preincubation of HT 29 cells with native VIP at 37 degrees C, before 125I-VIP binding and subsequent cross-linking reaction, decreased the labelling of the Mr-67 000 polypeptide up to 80%. Assuming one molecule of 125I-VIP cross-linked per polypeptide, we have characterized, for the first time, a major polypeptide of Mr = 64 000, which belongs to the high-affinity VIP binding site of an intestinal human cell line.  相似文献   
6.
The time course of internalization of radioiodinated vasoactive intestinal peptide (VIP) in HT29 cells was obtained using the technique of acetic acid removal of cell-surface-bound peptide. Even after 10 min incubation at 37 degrees C, 125I-VIP, initially bound on the HT29 cell surface, was compartmentalized within the cells. During the same time, degraded radioactive material was released by cells in the incubation medium. Localization of internalized 125I-VIP was investigated using two different subcellular fractionation techniques. 10 min after the onset of internalization, 125I-VIP labelling was found in intermediate structures and 10 min later the bulk of the radioactivity was detected in a low-density fraction containing very large lysosomes with a multivesicular aspect. The lysosomotropic agent NH4Cl appeared to inhibit 125I-VIP internalization, degradation and appearance of radiolabelled peptide in the large lysosomes in a time-dependent manner. Moreover, the effect of NH4Cl resulted in an accumulation of radioactive material in fractions containing microsomal structures. On the other hand, bacitracin, together with methylamine, highly enhanced 125I-VIP labelling in a membrane fraction, suggesting that these agents possibly act on a cell surface component of HT29 cells. These results support the conclusion that in HT29 cells, prelysosomal structures and large secondary lysosomes are probably part of the intracellular pathway of internalized VIP.  相似文献   
7.
8.
The lepidopteran mitochondrial control region: structure and evolution   总被引:8,自引:3,他引:5  
For several species of lepidoptera, most of the approximately 350-bp mitochondrial control-region sequences were determined. Six of these species are in one genus, Jalmenus; are closely related; and are believed to have undergone recent rapid speciation. Recent speciation was supported by the observation of low interspecific sequence divergence. Thus, no useful phylogeny could be constructed for the genus. Despite a surprising conservation of control-region length, there was little conservation of primary sequences either among the three lepidopteran genera or between lepidoptera and Drosophila. Analysis of secondary structure indicated only one possible feature in common--inferred stem loops with higher-than-random folding energies-- although the positions of the structures in different species were unrelated to regions of primary sequence similarity. We suggest that the conserved, short length of control regions is related to the observed lack of heteroplasmy in lepidopteran mitochondrial genomes. In addition, determination of flanking sequences for one Jalmenus species indicated (i) only weak support for the available model of insect 12S rRNA structure and (ii) that tRNA translocation is a frequent event in the evolution of insect mitochondrial genomes.   相似文献   
9.
Several dominantly inherited, late onset, neurodegenerative diseases are due to expansion of CAG repeats, leading to expansion of glutamine repeats in the affected proteins. These proteins are of very different sizes and, with one exception, show no sequence homology to known proteins or to each other; their functions are unknown. In some, the glutamine repeat starts near the N-terminus, in another near the middle and in another near the C-terminus, but regardless of these differences, no disease has been observed in individuals with fewer than 37 repeats, and absence of disease has never been found in those with more than 41 repeats. Protein constructs with more than 41 repeats are toxic to E. coli and to CHO cells in culture, and they elicit ataxia in transgenic mice. These observations argue in favour of a distinct change of structure associated with elongation beyond 37–41 glutamine repeats. The review describes experiments designed to find out what these structures might be and how they could influence the properties of the proteins of which they form part. Poly- -glutamines form pleated sheets of β-strands held together by hydrogen bonds between their amides. Incorporation of glutamine repeats into a small protein of known structure made it associate irreversibly into oligomers. That association took place during the folding of the protein molecules and led to their becoming firmly interlocked by either strand- or domain-swapping. Thermodynamic considerations suggest that elongation of glutamine repeats beyond a certain length may lead to a phase change from random coils to hydrogen-bonded hairpins. Possible mechanisms of expansion of CAG repeats are discussed in the light of looped DNA model structures.  相似文献   
10.
Lactoferrin was examined for its effect on the growth of a human colon adenocarcinoma cell line (HT 29) in culture and its action was compared to that produced by transferrin and two different iron solutions (ferrous sulfate and ferric chloride). When transferrin was replaced by either iron solutions the cell grew in proportion to the quantity added and the maximal effect obtained was identical to that produced by transferrin alone. When transferrin was replaced by lactoferrin the cells were unable to proliferate for a long time. However, in the presence of low-concentration iron solutions, lactoferrin stimulated the cell growth, and the effect was more pronounced with the ferric chloride solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号