首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The lower plant Physcomitrella patens synthesizes several long-chain polyunsaturated fatty acids (LC-PUFAs) by a series of desaturation and elongation reactions. In the present study, the full-length cDNAs for two novel fatty acid elongases designated PpELO1 and PpELO2 were isolated from P. patens using a PCR-based cloning strategy. These cDNAs encoding proteins of 335 and 280 amino acids with predicted molecular masses of 38.7 and 32.9 kDa, respectively, are predicted to contain seven transmembrane domains with a possible localization in the subcellular endoplasmic reticulum. Sequence comparisons and phylogenetic analysis revealed that they are closely related to other LC-PUFA elongases of the lower eukaryotes such as the Δ5- and Δ6-elongases of Marchantia polymorpha as well as the Δ6-elongase of P. patens. Heterologous expression of the PpELO1 in Saccharomyces cerevisiae led to the elongation of Δ9-, Δ6-C18, and Δ5-C20 LC-PUFAs, whereas only Δ9- and Δ6-C18 LC-PUFA substrates were used by PpELO2. Chimeric proteins were constructed to identify the amino acid regions most likely to be involved in the determination of the fatty acid substrate specificity. The expression of eight chimeric proteins in yeast revealed that substitution of the C-terminal 50 amino acids from PpELO1 into PpELO2 resulted in a high specificity for C20 fatty acid substrates. As a result, we suggest that the C-terminal region of PpELO1 is sufficient for C20 substrate elongation. Overall, these results provide important insights into the structural basis for substrate specificity of PUFA-generating ELO enzymes.  相似文献   
2.
Nontypeable Haemophilus influenzae (NTHi), an important human respiratory pathogen, frequently causes biofilm infections. Currently, resistance of bacteria within the biofilm to conventional antimicrobials poses a major obstacle to effective medical treatment on a global scale. Novel agents that are effective against NTHi biofilm are therefore urgently required. In this study, a series of natural and synthetic chalcones with various chemical substituents were evaluated in vitro for their antibiofilm activities against strong biofilm‐forming strains of NTHi. Of the test chalcones, 3‐hydroxychalcone (chalcone 8 ) exhibited the most potent inhibitory activity, its mean minimum biofilm inhibitory concentration (MBIC50) being 16 μg/mL (71.35 μM), or approximately sixfold more active than the reference drug, azithromycin (MBIC50 419.68 μM). The inhibitory activity of chalcone 8 , which is a chemically modified chalcone, appeared to be superior to those of the natural chalcones tested. Significantly, chalcone 8 inhibited biofilm formation by all studied NTHi strains, indicating that the antibiofilm activities of this compound occur across multiple strong‐biofilm forming NTHi isolates of different clinical origins. According to antimicrobial and growth curve assays, chalcone 8 at concentrations that decreased biofilm formation did not affect growth of NTHi, suggesting the biofilm inhibitory effect of chalcone 8 is non‐antimicrobial. In terms of structure–activity relationship, the possible substituent on the chalcone backbone required for antibiofilm activity is discussed. These findings indicate that 3‐hydroxychalcone (chalcone 8 ) has powerful antibiofilm activity and suggest the potential application of chalcone 8 as a new therapeutic agent for control of NTHi biofilm‐associated infections.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号