首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  2014年   1篇
  2013年   7篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1997年   2篇
  1992年   1篇
  1991年   1篇
  1984年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
The synthesis of 9 alpha,11 alpha-epoxy-5 alpha-cholest-7-ene-3 beta,5,6 beta-triol (1), a highly oxygenated marine sterol containing a 9,11-epoxide moiety in the nucleus, is described. Epoxy sterol 1 was synthesized from cholesta-5,7-dien-3 beta-ol. Oxidation of this sterol with m-chloroperbenzoic acid followed by hydrolysis and acetylation furnished 5 alpha-cholest-7-ene-3 beta,5,6 alpha-triol 3,6-diacetate (2). Mercuric acetate dehydrogenation of diacetate 2, followed by oxidation with manganese dioxide and epoxidation with m-chloroper-benzoic acid, afforded 9 alpha,11 alpha-epoxy-3 beta,5-dihydroxy-5 alpha-cholest-7-en-6-one (5). Reduction of 5 with lithium aluminum hydride gave the desired compound 1. The structures of all synthetic intermediates were confirmed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. A reassignment of resonances for carbons 1, 8, and 15 in the 13C NMR spectrum of 1, based on 2D-NMR correlation spectroscopy, has been accomplished.  相似文献   
2.
Abstract

2′,3′-dideoxy- and 2′,3′-dideoxy-2′,3′-didehydrocy-tidine (d2C and d4C) have been synthesized in good yields from 2′-deoxyuridine via dichlorinated derivatives 7a-b. The same synthetic strategy was used in the synthesis of d2CMe and d4CMe from thymidine. Following this method the evaluable 3′-chloro-2′-deoxycytidine derivatives 9-12 can easily be obtained.  相似文献   
3.
Differential scanning calorimetric (DSC), circular dichroism (CD) and molecular mechanics studies have been performed on two triple helices of DNA. The target duplex consists of 16 base pairs in alternate sequence of the type 5′-(purine)m(pyrimidine)m-3′. In both the triplexes, the third oligopyrimidine strand crosses the major groove at the purine–pyrimidine junction, with a simultaneous binding of the adjacent purine tracts on alternate strands of the Watson–Crick duplex. The switch is ensured by a non-nucleotide linker, the 1,2,3 propanetriol residue, that joins two 3′–3′ phosphodiester ends. The third strands differ from each other for a nucleotide in the junction region. The resulting triple helices were termed 14-mer-PXP and 15-mer-PXP (where P=phosphate and X=1,2,3-propanetriol residue) according to the number of nucleotides that compose the third strand. DSC data show two independent processes: the first corresponding to the dissociation of the third strand from the target duplex, the second to the dissociation of the double helix in two single strands. The two triple helices show the same stability at pH 6.6. At pH 6.0, the 15-mer-PXP triplex is thermodynamically more stable than the 14-mer-PXP triplex. Thermodynamic data are discussed in relation to structural models. The results are useful when considering the design of oligonucleotides that can bind in an antigene approach to the DNA for therapeutic purposes.  相似文献   
4.
An easy and efficient strategy to obtain new nucleoside based solid supports in which the nucleoside moieties have been anchored to the solid support through the nucleobase is here proposed. A simple and efficient solid-phase synthesis of 5' and 3'-derivatized uridine analogues has so been developed, following methodologies well established in organic chemistry.  相似文献   
5.
The chemical synthesis of bunch-ODN I and II prone to form quadruplex structures containing G-and T-tetrads has been reported. Structural studies were performed by 1H-NMR and CD melting experiments.  相似文献   
6.
HPLC and ESI-MS analysis have been used to investigate the effect of acrolein exposure on d(TITAGGG)4 human telomeric repeat. Preliminary results disclosed a novel relationship between the structure assumed by oligodeoxynucleotides (ODNs) and the capability of their nucleobase residues to react with acrolein.  相似文献   
7.
The chemical synthesis of several G-rich bunch-oligonucleotides and the structural characterization of the corresponding monomolecular G-quadruplexes (I-IV) have been reported. The synthetic method allow the achievement of monomolecular DNA quadruplex structures having unusual and predeterminable oligodeoxyribonucleotide (ODN) strand orientation.  相似文献   
8.
Targeting double-stranded DNA with homopyrimidine PNAs results in strand displacement complexes PNA/DNA/PNA rather than PNA/DNA/DNA triplex structures. Not much is known about the binding properties of DNA-PNA chimeras. A 16-mer 5'-DNA-3'-p-(N)PNA(C) has been investigated for its ability to hybridize a complementary duplex DNA by DSC, CD, and molecular modeling studies. The obtained results showed the formation of a triplex structure having similar, if not slightly higher, stability compared to the same all-DNA complex.  相似文献   
9.
Guanine-rich DNA sequences are widely dispersed in the eukaryotic genome and are abundant in regions with relevant biological significance. They can form quadruplex structures stabilized by guanine quartets. These structures differ for number and strand polarity, loop composition, and conformation. We report here the syntheses and the structural studies of a set of interconnected d(TG(4)T) fragments which are tethered, with different orientations, to a tetra-end-linker in an attempt to force the formation of specific four-stranded DNA quadruplex structures. Two synthetic strategies have been used to obtain oligodeoxyribonucleotide (ODN) strands linked with their 3'- or 5'-ends to each of the four arms of the linker. The first approach allowed the synthesis of tetra-end-linked ODN (TEL-ODN) containing the four ODN strands with a parallel orientation, while the latter synthetic pathway led to the synthesis of TEL-ODNs each containing antiparallel ODN pairs. The influence of the linker at 3'- or 5'-ODN, on the quadruplex typology and stability, in the presence of sodium or potassium ions, has been investigated by circular dichroism (CD), CD thermal denaturation, (1)H NMR experiments at variable temperature, and molecular modeling. All synthesized TEL-ODNs formed parallel G-quadruplex structures. Particularly, the TEL-ODN containing all parallel ODN tracts formed very stable parallel G-quadruplex complexes, whereas the TEL-ODNs containing antiparallel ODN pairs led to relatively less stable parallel G-quadruplexes. The molecular modeling data suggested that the above antiparallel TEL-ODNs can adopt parallel G-quadruplex structures thanks to a considerable folding of the tetra-end-linker around the whole quadruplex scaffold.  相似文献   
10.
In the present work, we report the conjugation of superparamagnetic nanoparticles to a fluorescently labeled oligodeoxyribonucleotide (ODN) able to fold into stable unimolecular guanine quadruple helix under proper ion conditions by means of its thrombin-binding aptamer (TBA) sequence. The novel modified ODN, which contained a fluorescent dU(Py) unit at 3'-end and a 12-amino-dodecyl spacer (C(12)-NH(2)) at 5' terminus, was characterized by ESI-MS and optical spectroscopy (UV, CD, fluorescence), and analyzed by RP-HPLC chromatography and electrophoresis. From CD and fluorescence experiments, we verified that dU(Py) and C(12)-NH(2) incorporation does not interfere with the conformational stability of the G-quadruplex. Subsequently, the conjugation of the pyrene-labeled ODN with the magnetite particles was performed, and the ODN-conjugated nanoparticles were studied through optical spectroscopy (UV, CD, fluorescence) and by enzymatic and chemical assays. We found that the nanoparticles enhanced the stability of the TBA ODN to enzymatic degradation. Finally, we evaluated the amount of the TBA-conjugated nanoparticles immobilized on a magnetic separator in view of the potential use of the nanosystem for the magnetic capture of thrombin from complex mixtures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号