首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  27篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   4篇
  2000年   3篇
  1997年   1篇
  1990年   1篇
  1983年   1篇
  1967年   1篇
  1923年   1篇
排序方式: 共有27条查询结果,搜索用时 0 毫秒
1.
2.
3.
4.
eEF2K (eukaryotic elongation factor 2 kinase) is a Ca2+/CaM (calmodulin)-dependent protein kinase which regulates the translation elongation machinery. eEF2K belongs to the small group of so-called 'α-kinases' which are distinct from the main eukaryotic protein kinase superfamily. In addition to the α-kinase catalytic domain, other domains have been identified in eEF2K: a CaM-binding region, N-terminal to the kinase domain; a C-terminal region containing several predicted α-helices (resembling SEL1 domains); and a probably rather unstructured 'linker' region connecting them. In the present paper, we demonstrate: (i) that several highly conserved residues, implicated in binding ATP or metal ions, are critical for eEF2K activity; (ii) that Ca2+/CaM enhance the ability of eEF2K to bind to ATP, providing the first insight into the allosteric control of eEF2K; (iii) that the CaM-binding/α-kinase domain of eEF2K itself possesses autokinase activity, but is unable to phosphorylate substrates in trans; (iv) that phosphorylation of these substrates requires the SEL1-like domains of eEF2K; and (v) that highly conserved residues in the C-terminal tip of eEF2K are essential for the phosphorylation of eEF2, but not a peptide substrate. On the basis of these findings, we propose a model for the functional organization and control of eEF2K.  相似文献   
5.
6.
Osteoarthritis (OA) is a common joint disease, mainly effecting the elderly population. The cause of OA seems to be an imbalance in catabolic and anabolic factors that develops with age. IL-1 is a catabolic factor known to induce cartilage damage, and transforming growth factor (TGF)-beta is an anabolic factor that can counteract many IL-1-induced effects. In old mice, we observed reduced responsiveness to TGF-beta-induced IL-1 counteraction. We investigated whether expression of TGF-beta and its signaling molecules altered with age. To mimic the TGF-beta deprived conditions in aged mice, we assessed the functional consequence of TGF-beta blocking. We isolated knee joints of mice aged 5 months or 2 years, half of which were exposed to IL-1 by intra-articular injection 24 h prior to knee joint isolation. Immunohistochemistry was performed, staining for TGF-beta1, -2 or -3, TGF-betaRI or -RII, Smad2, -3, -4, -6 and -7 and Smad-2P. The percentage of cells staining positive was determined in tibial cartilage. To mimic the lack of TGF-beta signaling in old mice, young mice were injected with IL-1 and after 2 days Ad-LAP (TGF-beta inhibitor) or a control virus were injected. Proteoglycan (PG) synthesis (35S-sulfate incorporation) and PG content of the cartilage were determined. Our experiments revealed that TGF-beta2 and -3 expression decreased with age, as did the TGF-beta receptors. Although the number of cells positive for the Smad proteins was not altered, the number of cells expressing Smad2P strongly dropped in old mice. IL-1 did not alter the expression patterns. We mimicked the lack of TGF-beta signaling in old mice by TGF-beta inhibition with LAP. This resulted in a reduced level of PG synthesis and aggravation of PG depletion. The limited response of old mice to TGF-beta induced-IL-1 counteraction is not due to a diminished level of intracellular signaling molecules or an upregulation of intracellular inhibitors, but is likely due to an intrinsic absence of sufficient TGF-beta receptor expression. Blocking TGF-beta distorted the natural repair response after IL-1 injection. In conclusion, TGF-beta appears to play an important role in repair of cartilage and a lack of TGF-beta responsiveness in old mice might be at the root of OA development.  相似文献   
7.
To better characterize and conserve crop genetic resources, the assessment of genetic identity, relatedness, and structure among entries and collections becomes a priority. In the present study, a random amplified polymorphic DNA (RAPD) assay was applied as a quick, cost-effective, and preliminary screen to quantify and partition the molecular variation among accessions. Fourteen phenotypically uniform accessions of Brassica oleracea var. capitata L. (cabbage) similarly designated as `Golden Acre' were tested with nine decamer oligonucleotide primers. These amplifications generated 110 fragments, of which 80 were polymorphic ranging in size from 370 to 1720 bp. The 80 polymorphic fragments were sufficient to distinguish between all 14 accessions. Data based on the partitioning of variation among accessions indicated that `Golden Acre' entries could be reduced to as few as four groups, with the potential loss of variation being only 4.6% of the absolute current genetic variation in those holdings as estimated from RAPD analysis. This proposed grouping would concurrently save approximately 70% [$750–1000 (US) per accession] for each cycle of regeneration (approximately 20–25 years at most) which alternatively could then be used for other priorities in B. oleracea conservation and use. This case represents but one example where targeted use of a molecular-marker assay linked with rigorous statistical analysis will be useful for plant genebank management, particularly for questions at the intraspecific level. Molecular markers will provide genebank curators with additional sources of information to better plan and organize collection holdings and use finite financial support in a more effective manner. Received: 10 June 1996 / Accepted: 23 August 1996  相似文献   
8.
9.
Sperm chromatin integrity is essential for accurate transmission of male genetic information, and normal sperm chromatin structure is important for fertilization. Protamine is a nuclear protein that plays a key role in sperm DNA integrity, because it is responsible for sperm DNA stability and packing until the paternal genome is delivered into the oocyte during fertilization. Our aim was to investigate protamine deficiency in sperm cells of Bos indicus bulls (Nelore) using chromomycin A3 (CMA3) staining. Frozen semen from 14 bulls were thawed, then fixed in Carnoy's solution. Smears were prepared and analyzed by microscopy. As a positive control of CMA3 staining, sperm from one bull was subjected to deprotamination of nuclei. The percentage of CMA3-positive bovine sperm did not vary among batches. Only two bulls showed a higher percentage of CMA3-positive sperm cells compared to the others. CMA3 is a simple and useful tool for detecting sperm protamine deficiency in bulls.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号