首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   7篇
  102篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1973年   1篇
  1972年   1篇
  1968年   2篇
  1966年   1篇
  1965年   1篇
  1945年   1篇
  1941年   1篇
  1937年   1篇
排序方式: 共有102条查询结果,搜索用时 0 毫秒
1.
2.
-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent -(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   
3.
The various facets of the uptake of adenosine by central nervous tissues are described. The uptake process includes the transport of nucleoside across neuronal and glial plasma membranes and its metabolism within the cell. Much of the transported adenosine is phosphorylated into adenosine nucleotides. Inhibitors of adenosine uptake increase extracellular levels of adenosine and can thus potentiate its pharmacological actions. This may be an important component in the actions of various groups of psychoactive drugs.  相似文献   
4.
5.
Do benzodiazepines bind at adenosine uptake sites in CNS?   总被引:6,自引:0,他引:6  
P H Wu  J W Phillis  A S Bender 《Life sciences》1981,28(9):1023-1031
Benzodiazepines inhibit adenosine uptake into rat cerebral cortical synaptosomes and their potency as inhibitors of adenosine uptake is closely correlated with therapeutic efficacy. Agents which possess “benzodiazepine like” activities such as CL218,872, zopiclone and fominoben and which displace benzodiazepine binding to brain cell membranes, are also inhibitors of adenosine uptake into brain synaptosomes. The IC50 values of all these compounds as inhibitors of adenosine uptake are in close agreement with the IC50 values obtained for the displacement of benzodiazepine binding to the brain receptors. Adenosine uptake inhibitors (dipyridamole, hexobendine, papaverine, 6-(2-hydroxy-5-nitrobenzyl)thioguanosine) which competitively inhibit adenosine uptake, presumably by blocking adenosine binding to its carrier-protein, are competitive inhibitors of diazepam binding to the brain membrane receptors. The finding of a pronounced correlation between inhibition of benzodiazepine binding and inhibition of adenosine uptake further supports the proposal that benzodiazepines may exert part of their pharmacological action through the inhibition of adenosine uptake.  相似文献   
6.
Adenosine and the adenosine 5'-phosphates (5'-AMP, 5'-ADP and 5'-ATP) depress the spontaneous firing of cerebral cortical neurons. In this study adenosine analogs, adenosine transport blockers and adenosine deaminase inhibitors have been used to gain further insight into the nature of the adenosine receptor and the likely routes of metabolism of extracellularly released adenosine. The firing rate of cortical neurons, including identified corticospinal neurons, was depressed by 2-substituted derivatives of adenosine. 2-Halogenated derivatives of adenosine were potent depressors while 2-aminoadenosine and 2-hydroxyadenosine (crotonoside) were slightly less potent than adenosine. The α,β-methylene isosteres of 5'-ADP and 5'-ATP were almost devoid of agonist activity while the β,γ-methylene analog was an active agonist. This suggests that ADP and ATP must be converted to AMP or possibly adenosine before they can activate the adenosine receptor. 2'-, 3'- and 5'- deoxyadenosine depressed spontaneous firing without antagonizing the effect of adenosine. Adenosine deaminase inhibitors, deoxycoformycin and erythro-9-(2-hydroxy-3-nonyl) adenine had potent, long lasting depressant actions on the spontaneous firing of cortical neurons and concurrently potentiated the actions of adenosine or 5'-AMP. Inhibitors of adenosine transport, papaverine and 2-hydroxy-5-nitrobenzylthioguanosine, prolonged the duration of action of adenosine and 5'-AMP. Intracellular recordings show that 5'-AMP hyperpolarizes cerebral cortical neurons and suppresses spontaneous and evoked excitatory postsynaptic potentials, in the absense of any pronounced alterations in membrane resistance.  相似文献   
7.
Vasoactive intestinal polypeptide (VIP), applied iontophoretically, excited 40% of the spontaneously firing rat cortical neurons tested. No neurons were depressed by VIP. When applied simultaneously with adenosine or noradrenaline, VIP depressed the firing of cortical neurons, but this depression could be reproduced by the passage of similar positive currents through a 50 mM NaCl-containing barrel of the multiple barrelled micropipette. VIP, therefore, excited rat cortical neurons and no depressant actions were apparent when VIP was applied together with adenosine or noradrenaline. Leakage of adenosine or noradrenaline during iontophoretic applications of the peptide may account for the reported inhibitory actions of VIP.  相似文献   
8.
Brain extracellular levels of glutamate, aspartate, GABA and glycine increase rapidly following the onset of ischemia, remain at an elevated level during the ischemia, and then decline over 20-30 min following reperfusion. The elevated levels of the excitotoxic amino acids, glutamate and aspartate, are thought to contribute to ischemia-evoked neuronal injury and death. Calcium-evoked exocytotic release appears to account for the initial (1-2 min) efflux of neurotransmitter-type amino acids following the onset of ischemia, with non-vesicular release responsible for much of the subsequent efflux of these and other amino acids, including taurine and phosphoethanolamine. Extracellular Ca(2+)-independent release is mediated, in part by Na(+)-dependent amino acid transporters in the plasma membrane operating in a reversed mode, and by the opening of swelling-induced chloride channels, which allow the passage of amino acids down their concentration gradients. Experiments on cultured neurons and astrocytes have suggested that it is the astrocytes which make the primary contribution to this amino acid efflux. Inhibition of phospholipase A(2) attenuates ischemia-evoked release of both amino and free fatty acids from the rat cerebral cortex indicating that this group of enzymes is involved in amino acid efflux, and also accounting for the consistent ischemia-evoked release of phosphoethanolamine. It is, therefore, possible that disruption of membrane integrity by phospholipases plays a role in amino acid release. Recovery of amino acid levels to preischemic levels requires their uptake by high affinity Na(+)-dependent transporters, operating in their normal mode, following restoration of energy metabolism, cell resting potentials and ionic gradients.  相似文献   
9.
Pre-ischemic hyperglycemia aggravates brain damage due to transient global ischemia as demonstrated by exacerbation of brain lesions. Lactacidosis and elevated glutamate levels have been implicated as mechanisms of the increased damage. Our objective was to determine the effects of different levels of glucose (0, 66.5, 450 mg/dL) in cortical superfusates on the ischemia/reperfusion-evoked release of amino acids from the rat cerebral cortex. Physiologic levels of glucose significantly reduced the amount of aspartate, glutamate and gamma-aminobutyric acid and the supra-physiologic levels of glucose reduced the amount of aspartate and phosphoethanolamine released from the cortex during ischemia/reperfusion in comparison with no glucose. The decrease in glutamate release may be due to increased availability of glucose for glycolysis with the subsequent formation of ATP and lactate, which has been shown to act as an energy source for neurons. The decreased levels may also reflect the continued energy-dependent uptake of glutamate by glial cells.  相似文献   
10.
Herpes simplex virus 1 (HSV-1) mutants that lack the γ(1)34.5 gene are unable to replicate in the central nervous system but maintain replication competence in dividing cell populations, such as those found in brain tumors. We have previously demonstrated that a γ(1)34.5-deleted HSV-1 expressing murine interleukin-12 (IL-12; M002) prolonged survival of immunocompetent mice in intracranial models of brain tumors. We hypothesized that M002 would be suitable for use in clinical trials for patients with malignant glioma. To test this hypothesis, we (i) compared the efficacy of M002 to three other HSV-1 mutants, R3659, R8306, and G207, in murine models of brain tumors, (ii) examined the safety and biodistribution of M002 in the HSV-1-sensitive primate Aotus nancymae following intracerebral inoculation, and (iii) determined whether murine IL-12 produced by M002 was capable of activating primate lymphocytes. Results are summarized as follows: (i) M002 demonstrated superior antitumor activity in two different murine brain tumor models compared to three other genetically engineered HSV-1 mutants; (ii) no significant clinical or magnetic resonance imaging evidence of toxicity was observed following direct inoculation of M002 into the right frontal lobes of A. nancymae; (iii) there was no histopathologic evidence of disease in A. nancymae 1 month or 5.5 years following direct inoculation; and (iv) murine IL-12 produced by M002 activates A. nancymae lymphocytes in vitro. We conclude that the safety and preclinical efficacy of M002 warrants the advancement of a Δγ(1)34.5 virus expressing IL-12 to phase I clinical trials for patients with recurrent malignant glioma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号