首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2003年   3篇
  1997年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
In long‐term grassland experiments, positive biodiversity effects on plant productivity commonly increase with time. Subsequent glasshouse experiments showed that these strengthened positive biodiversity effects persist not only in the local environment but also when plants are transferred into a common environment. Thus, we hypothesized that community diversity had acted as a selective agent, resulting in the emergence of plant monoculture and mixture types with differing genetic composition. To test our hypothesis, we grew offspring from plants that were grown for eleven years in monoculture or mixture environments in a biodiversity experiment (Jena Experiment) under controlled glasshouse conditions in monocultures or two‐species mixtures. We used epiGBS, a genotyping‐by‐sequencing approach combined with bisulphite conversion, to provide integrative genetic and epigenetic (i.e., DNA methylation) data. We observed significant divergence in genetic and DNA methylation data according to selection history in three out of five perennial grassland species, namely Galium mollugo, Prunella vulgaris and Veronica chamaedrys, with DNA methylation differences mostly reflecting the genetic differences. In addition, current diversity levels in the glasshouse had weak effects on epigenetic variation. However, given the limited genome coverage of the reference‐free bisulphite method epiGBS, it remains unclear how much of the differences in DNA methylation was independent of underlying genetic differences. Our results thus suggest that selection of genetic variants, and possibly epigenetic variants, caused the rapid emergence of monoculture and mixture types within plant species in the Jena Experiment.  相似文献   
2.
The effects of increasing ammonium concentrations in combination with different pH levels were studied on five heathland plant species to determine whether their occurrence and decline could be attributed to ammonium toxicity and/or pH levels. Plants were grown in growth media amended with four different ammonium concentrations (10, 100, 500 and 1000 micromol l(-1)) and two pH levels resembling acidified (pH 3.5 or 4) and weakly buffered (pH 5 or 5.5) situations. Survival of Antennaria dioica and Succisa pratensis was reduced by low pH in combination with high ammonium concentrations. Biomass decreased with increased ammonium concentrations and decreasing pH levels. Internal pH of the plants decreased with increasing ammonium concentrations. Survival of Calluna vulgaris, Deschampsia flexuosa and Gentiana pneumonanthe was not affected by ammonium. Moreover, biomass increased with increasing ammonium concentrations. Biomass production of G. pneumonanthe reduced at low pH levels. A decline of acid-sensitive species in heathlands was attributed to ammonium toxicity effects in combination with a low pH.  相似文献   
3.
4.
The asymmetric syntheses of the enantiomers of Madrol® ( 1 ) are described and their odor properties evaluated. (1S)-(−)- 1 exerts a powerful sandalwood odor with some animalic undertones, whereas its antipode smells sweet and flowery rather than like sandalwood. Molecular surface comparisons show remarkable deviations in the hydrophobic parts of the two enantiomers. Chirality 9:380–385, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
5.
Tricyclo-DNA (tcDNA) is a conformationally constrained oligonucleotide analog that has demonstrated great therapeutic potential as antisense oligonucleotide (ASO) for several diseases. Like most ASOs in clinical development, tcDNA were modified with phosphorothioate (PS) backbone for therapeutic purposes in order to improve their biodistribution by enhancing association with plasma and cell protein. Despite the advantageous protein binding properties, systemic delivery of PS-ASO remains limited and PS modifications can result in dose limiting toxicities in the clinic. Improving extra-hepatic delivery of ASO is highly desirable for the treatment of a variety of diseases including neuromuscular disorders such as Duchenne muscular dystrophy. We hypothesized that conjugation of palmitic acid to tcDNA could facilitate the delivery of the ASO from the bloodstream to the interstitium of the muscle tissues. We demonstrate here that palmitic acid conjugation enhances the potency of tcDNA-ASO in skeletal and cardiac muscles, leading to functional improvement in dystrophic mice with significantly reduced dose of administered ASO. Interestingly, palmitic acid-conjugated tcDNA with a full phosphodiester backbone proved effective with a particularly encouraging safety profile, offering new perspectives for the clinical development of PS-free tcDNA-ASO for neuromuscular diseases.  相似文献   
6.
Current approaches for assessing the effects of invasive alien species (IAS) are biased toward the negative effects of these species, resulting in an incomplete picture of their real effects. This can result in an inefficient IAS management. We address this issue by describing the INvasive Species Effects Assessment Tool (INSEAT) that enables expert elicitation for rapidly assessing the ecological consequences of IAS using the ecosystem services (ES) framework. INSEAT scores the ecosystem service “gains and losses” using a scale that accounted for the magnitude and the reversibility of its effects. We tested INSEAT on 18 IAS in Great Britain. Here, we highlighted four case studies: Harmonia axyridis (Harlequin ladybird), Astacus leptodactylus (Turkish crayfish), Pacifastacus leniusculus (Signal crayfish) and Impatiens glandulifera (Himalayan balsam). The results demonstrated that a collation of different experts’ opinions using INSEAT could yield valuable information on the invasive aliens’ ecological and social effects. The users can identify certain IAS as ES providers and the trade‐offs between the ES provision and loss associated with them. This practical tool can be useful for evidence‐based policy and management decisions that consider the potential role of invasive species in delivering human well‐being.  相似文献   
7.
In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration.  相似文献   
8.
Populations often differ in phenotype and these differences can be caused by adaptation by natural selection, random neutral processes, and environmental responses. The most straightforward way to divide mechanisms that influence phenotypic variation is heritable variation and environmental‐induced variation (e.g., plasticity). While genetic variation is responsible for most heritable phenotypic variation, part of this is also caused by nongenetic inheritance. Epigenetic processes may be one of the underlying mechanisms of plasticity and nongenetic inheritance and can therefore possibly contribute to heritable differences through drift and selection. Epigenetic variation may be influenced directly by the environment, and part of this variation can be transmitted to next generations. Field screenings combined with common garden experiments will add valuable insights into epigenetic differentiation, epigenetic memory and can help to reveal part of the relative importance of epigenetics in explaining trait variation. We explored both genetic and epigenetic diversity, structure and differentiation in the field and a common garden for five British and five French Scabiosa columbaria populations. Genetic and epigenetic variation was subsequently correlated with trait variation. Populations showed significant epigenetic differentiation between populations and countries in the field, but also when grown in a common garden. By comparing the epigenetic variation between field and common garden‐grown plants, we showed that a considerable part of the epigenetic memory differed from the field‐grown plants and was presumably environmentally induced. The memory component can consist of heritable variation in methylation that is not sensitive to environments and possibly genetically based, or environmentally induced variation that is heritable, or a combination of both. Additionally, random epimutations might be responsible for some differences as well. By comparing epigenetic variation in both the field and common environment, our study provides useful insight into the environmental and genetic components of epigenetic variation.  相似文献   
9.
The basic premise of conservation genetics is that small populations may be genetically threatened. The two steps leading to this premise are: (1) due to prominent influence of random genetic drift and inbreeding allelic and genotypic diversity in small populations is expected to be low, and (2) low allelic diversity and high homozygosity are expected to lead to immediate fitness decreases (inbreeding depression) and a compromised potential for evolutionary adaptation. Conservation genetic research has been strongly stimulated by the application of neutral molecular markers like microsatellites and AFLPs. In general these marker studies have provided evidence for step 1. It is less evident how these markers may provide evidence for step 2. In this essay we argue that, in order to get detailed insight in step 2, adopting a conservation genomic approach, in which conservation genetics will use approaches from ecological and evolutionary functional genomics (ecogenomics), is both necessary and feasible. Conservation genomics is necessary for studying functional genomic variation as function of drift and inbreeding, for studying the mechanisms that relate low genetic variation to low fitness, for integrating environmental and genetic approaches to conservation biology, and for developing modern, fast monitoring tools. The rapid technical and financial developments in genomics currently make conservation genomics feasible, and will improve feasibility in the very near future even further. We therefore argue that conservation genomics personifies part of the near future of conservation genetics.  相似文献   
10.
For plants with wide distributional areas, covering a wide range of ecologically distinct habitats, evolutionary divergence can lead to substantial phenotypic variation across a species’ range. These intraspecific trait differences can be very informative about the nature of the selective environment as they potentially reflect different environmental selection pressures while controlling for other species characteristics. In this study, multiple regression and structural equation models were used to examine the relative importance of environmental, ecological, population size and population density effects for variation in growth, reproduction and leaf morphology among 36 populations of the perennial plant Arabidopsis lyrata ssp. petraea across its northwest European range. Substantial variation in temperature, soil nutrient levels and herbivory was observed across the species’ range. In addition, large differences in flowering percentage and individual seed production were found. Leaf morphology varied considerably, with a substantial amount of variation in specific leaf area and trichome density among populations. Structural equation modeling suggested that this species is sensitive to small population sizes, eutrophication and herbivory. Reproductive output was negatively related to herbivory. In addition population size was negatively associated with soil nutrient concentrations. Leaf morphology was shown to be mainly associated with temperature and herbivory. Lower specific leaf areas and lower trichome densities were related to colder areas and high trichomes densities were related to high levels of herbivory. These model results are consistent with the interpretation that, in addition to changing environmental effects across its range, ecological effects such as herbivory contribute to the large variation in life history and morphology of this species. The results reveal a strong negative effect of herbivory on the reproductive output of this species, not only via direct effects of herbivory on flowers and seeds, but also indirectly via a shift in life history strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号