全文获取类型
收费全文 | 233篇 |
免费 | 8篇 |
国内免费 | 1篇 |
专业分类
242篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2018年 | 6篇 |
2017年 | 3篇 |
2016年 | 5篇 |
2015年 | 9篇 |
2014年 | 17篇 |
2013年 | 23篇 |
2012年 | 15篇 |
2011年 | 13篇 |
2010年 | 8篇 |
2009年 | 13篇 |
2008年 | 13篇 |
2007年 | 9篇 |
2006年 | 11篇 |
2005年 | 5篇 |
2004年 | 9篇 |
2003年 | 4篇 |
2002年 | 2篇 |
2001年 | 7篇 |
2000年 | 5篇 |
1999年 | 2篇 |
1998年 | 8篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1995年 | 2篇 |
1994年 | 4篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1988年 | 3篇 |
1986年 | 1篇 |
1983年 | 1篇 |
1982年 | 4篇 |
1981年 | 4篇 |
1980年 | 3篇 |
1979年 | 3篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1973年 | 2篇 |
1972年 | 2篇 |
1970年 | 2篇 |
1969年 | 1篇 |
排序方式: 共有242条查询结果,搜索用时 0 毫秒
1.
Thillai Punitha Siew-Moi Phang Joon Ching Juan John Beardall 《Marine biotechnology (New York, N.Y.)》2018,20(3):282-303
Vanadium-dependent haloperoxidases (V-HPO), able to catalyze the reaction of halide ions (Cl?, Br?, I-) with hydrogen peroxide, have a great influence on the production of halocarbons, which in turn are involved in atmospheric ozone destruction and global warming. The production of these haloperoxidases in macroalgae is influenced by changes in the surrounding environment. The first reported vanadium bromoperoxidase was discovered 40 years ago in the brown alga Ascophyllum nodosum. Since that discovery, more studies have been conducted on the structure and mechanism of the enzyme, mainly focused on three types of V-HPO, the chloro- and bromoperoxidases and, more recently, the iodoperoxidase. Since aspects of environmental regulation of haloperoxidases are less well known, the present paper will focus on reviewing the factors which influence the production of these enzymes in macroalgae, particularly their interactions with reactive oxygen species (ROS). 相似文献
2.
Nucleotide-dependent dimerization of the C-terminal domain of the ABC transporter CvaB in colicin V secretion
下载免费PDF全文

The cytoplasmic membrane proteins CvaB and CvaA and the outer membrane protein TolC constitute the bacteriocin colicin V secretion system in Escherichia coli. CvaB functions as an ATP-binding cassette transporter, and its C-terminal domain (CTD) contains typical motifs for the nucleotide-binding and Walker A and B sites and the ABC signature motif. To study the role of the CvaB CTD in the secretion of colicin V, a truncated construct of this domain was made and overexpressed. Different forms of the CvaB CTD were found during purification and identified as monomer, dimer, and oligomer forms by gel filtration and protein cross-linking. Nucleotide binding was shown to be critical for CvaB CTD dimerization. Oligomers could be converted to dimers by nucleotide triphosphate-Mg, and nucleotide release from dimers resulted in transient formation of monomers, followed by oligomerization and aggregation. Site-directed mutagenesis showed that the ABC signature motif was involved in the nucleotide-dependent dimerization. The spatial proximity of the Walker A site and the signature motif was shown by disulfide cross-linking a mixture of the A530C and L630C mutant proteins, while the A530C or L630C mutant protein did not dimerize on its own. Taken together, these results indicate that the CvaB CTD formed a nucleotide-dependent head-to-tail dimer. 相似文献
3.
Stimulation of phosphoribosyl pyrophosphate and purine nucleotide production by pyrroline 5-carboxylate in human erythrocytes 总被引:6,自引:0,他引:6
Recent studies have shown that pyrroline 5-carboxylate, the intermediate in the interconversions of proline, ornithine, and glutamate, can regulate the metabolism of erythrocytes. We now report that the formation of 5-phosphoribosyl 1-pyrophosphate (PP-Rib-P) was markedly stimulated by pyrroline 5-carboxylate in intact red cells. The production of PP-Rib-P is an important point of regulation in nucleotide metabolism. We found that pyrroline 5-carboxylate increased glucose metabolism through the oxidative arm of the pentose shunt, ribose 5-phosphate formation, and PP-Rib-P production and subsequently augmented purine nucleotide production through the salvage pathway in erythrocytes. We now report that pyrroline 5-carboxylate markedly stimulated the net synthesis of inosine monophosphate from hypoxanthine in intact human red cells so that the pool of inosine monophosphate became 20-30% of the total pool of purine nucleotides. Inosine monophosphate has been considered to be a "mobile pool" of purines, i.e. a reservoir from which peripheral tissues can be supplied; the effect of pyrroline 5-carboxylate on the inosine monophosphate pool may be a mechanism for regulating the function of erythrocytes in purine delivery. 相似文献
4.
5.
Hu CA Donald SP Yu J Lin WW Liu Z Steel G Obie C Valle D Phang JM 《Molecular and cellular biochemistry》2007,299(1-2):85-92
The neuropathogenesis of influenza-associated encephalopathy in children and Reye's syndrome remains unclear. A surveillance
effort conducted during 2000-2003 in South-West Japan reveals that almost all fatal and handicapped influenza-associated encephalopathy
patients exhibit a disorder of mitochondrial β-oxidation with elevated serum acylcarnitine ratios (C16:0+C18:1)/C2. Here we show invasion by a non-neurotropic epidemic influenza A H3N2 virus in cerebral capillaries with progressive brain
edema after intranasal infection of mice having impaired mitochondrial β-oxidation congenitally or posteriorly in the newborn/
suckling periods. Mice genetically lacking of carnitine transporter OCTN2, resulting in carnitine deficiency and impaired
β-oxidation, exhibited significant higher virus-genome numbers in the brain, accumulation of virus antigen exclusively in
the cerebral capillaries and increased brain vascular permeability compared to in wild type mice. Mini-plasmin, which proteolytically
potentiates influenza virus multiplication in vivo and destroys the blood-brain barrier, accumulated with virus antigen in the brain capillaries of OCTN2-deficient mice but
only a little in wild-type mice. These results suggest that the impaired mitochondrial β-oxidation changes the susceptibility
to a non-neurotropic influenza A virus as to multiplication in the brain capillaries and to cause brain edema. These pathological
findings in the brain of mice having impaired mitochondrial β-oxidation after influenza virus infection may have implications
for human influenza-associated encephalopathy. 相似文献
6.
Prolidase [E.C. 3.4.13.9], a member of the matrix metalloproteinase (MMP) family, is a manganese-dependent cytosolic exopeptidase that cleaves imidodipeptides containing C-terminal proline or hydroxyproline. It plays an important role in collagen metabolism, matrix remodeling and cell growth. Nitric oxide (NO), a versatile signaling molecule, regulates many processes including collagen synthesis and matrix remodeling and, thereby, may modulate angiogenesis, tumor invasiveness, and metastasis. Thus, we considered that prolidase may be an important target of NO regulation. In our study, SIN I and DETA/NO were used as NO donors. Both donors increased prolidase activity in a time-dependent and dose-dependent manner. Prolidase activity increased not only with NO donors but also with endogenous NO in cells transfected with iNOS. The effect of iNOS was abolished by treatment with S-methylisothiourea (SMT), a selective inhibitor of iNOS. However, with either exogenous or endogenous sources of NO, the increase in prolidase activity was not accompanied by increased prolidase expression. Therefore, we suspected phosphorylation of prolidase as a potential mechanism regulating enzyme activation. We observed increased serine/threonine phosphorylation on prolidase protein in cells treated with NO donors and in cells transfected with iNOS. To determinate the pathways that may mediate prolidase induction by NO, we first used 8-Br-cGMP, a cGMP agonist, and found that 8-Br-cGMP strongly and rapidly stimulated prolidase activity accompanied by increased phosphorylation. Rp-8-Br-pCPT-cGMP, an inhibitor of cGMP, reduced NO donor-stimulated prolidase activity to control levels. To test whether the MAPK pathway is involved in this NO-dependent activation, we used an ERK1/2 inhibitor and found that it had no effect on prolidase activity increased by NO donors. These results demonstrate that NO stimulates prolidase activity by increasing serine/threonine phosphorylation through PKG-cGMP pathway, but independent of MAPK and suggest an interaction between inflammatory signaling pathways and regulation of the terminal step of matrix degradation. 相似文献
7.
Recent years have seen the convergence of both genetic and biochemical approaches in the study of protein translocation inE. coli. The powerful combination of these approaches is exemplified in the use of anin vitro protein synthesis-protein translocaltion system to analyze the role of genetically defined components of the protein translocation machinery. We describe in this review recent results focusing on the function of thesecA, secB, andsecY gene products and the demonstration of their requirement forin vitro protein translocation. The SecA protein was recently shown to possess ATPase activity and was proposed to be a component of the translocation ATPase. We present a speculative working model whereby the translocator complex is composed of the integral membrane proteins SecY, SecD, SecE, and SecF, forming an aqueous channel in the cytoplasmic membrane, and the tightly associated peripheral membrane protein SecA functioning as the catalytic subunit of the translocator or protein-ATPase. 相似文献
8.
Wee Ling Heng Chong Hee Lim Ban Hock Tan Maciej Piotr Chlebicki Winnie Hui Ling Lee Tracy Seck Yeong Phang Lim 《PloS one》2012,7(12)
Background
In February 2012, the National Cardiovascular Homograft Bank (NCHB) became the first tissue bank outside of North America to receive accreditation from the American Association of Tissue Banks. From 2008 to 2009, NCHB had been decontaminating its cardiovascular homografts with penicillin and streptomycin. The antibiotic decontamination protocol was changed in January 2010 as amikacin and vancomycin were recommended, in order to cover bacteria isolated from post-recovery and post- antibiotic incubation tissue cultures.Aim
The objective of this study is to determine the optimal incubation conditions for decontamination of homografts by evaluating the potencies of amikacin and vancomycin in different incubation conditions. Retrospective reviews of microbiological results were also performed for homografts recovered from 2008 to 2012, to compare the effectiveness of penicillin-streptomycin versus the amikacin-vancomycin regimens.Methods
Based on microbiological assays stated in United States Pharmacopeia 31, potency of amikacin was evaluated by turbidimetric assay using Staphylococcus aureus, while vancomycin was by diffusion assay using Bacillus subtilis sporulate. Experiments were performed to investigate the potencies of individual antibiotic 6-hours post incubation at 4°C and 37°C and 4°C for 24 hours, after the results suggested that amikacin was more potent at lower temperature.Findings
Tissue incubation at 4°C for 24 hours is optimal for both antibiotics, especially for amikacin, as its potency falls drastically at 37°C.Conclusion
The decontamination regimen of amikacin-vancomycin at 4°C for 24 hours is effective. Nevertheless, it is imperative to monitor microbiological trends closely and evaluate the efficacy of current antibiotics regimen against emerging strains of micro-organisms. 相似文献9.
Proline dehydrogenase (oxidase, PRODH/POX), the first enzyme in the pathway of proline catabolism, has been identified as a mitochondrial, metabolic tumor suppressor, which is downregulated in a variety of human tumors. However, our recent findings show that PRODH/POX is upregulated by hypoxia in vitro and in vivo. The combination of low glucose and hypoxia produces additive effects on PRODH/POX expression. Both hypoxia and glucose depletion enhance PRODH/POX expression through AMP-activated protein kinase (AMPK) activation to promote tumor cell survival. Nevertheless, the mechanisms underlying PRODH/POX prosurvival functions are different for hypoxia and low-glucose conditions. Glucose depletion with or without hypoxia elevates PRODH/POX and proline utilization to supply ATP for cellular energy needs. Interestingly, under hypoxia PRODH/POX induces protective autophagy by generating reactive oxygen species (ROS). AMPK is the main initiator of stress-triggered autophagy. Thus, PRODH/POX acts as a downstream effector of AMPK in the activation of autophagy under hypoxia. This regulation was confirmed to be independent of the mechanistic target of rapamycin (MTOR) pathway, a major downstream target of AMPK signaling. 相似文献
10.
The tropical agarophyte Gracilaria changii has been much researched and documented by the Algae Research Laboratory, University of Malaya, especially with regards to
its potential as a seaweed bioreactor for valuable compounds. Protoplast regeneration of this seaweed was developed following
the optimization of protoplast isolation protocol. Effect of the concentration and combination of isolating enzymes, incubation
period, temperature, enzyme solution pH, tissue source on the protoplast yields were used to optimize the isolation protocol.
The enzyme mixture with 4% w/v cellulase Onozuka R-10, 2% w/v macerozyme R-10 and 1 unit mL-1 agarase was found to produce the highest yield of protoplast at 28°C and 3 h incubation period. Thallus tips gave higher
yields of protoplasts than middle segments. Freshly isolated G. changii protoplasts were cultured in MES medium. Regeneration of protoplast cell walls after 24 h was confirmed by calcofluor white
M2R staining under UV fluorescence microscopy. The protoplasts with regenerated cell walls then underwent a series of cell
division to produce callus-like cell masses in MES medium. Following this, juvenile plants of G. changii were obtained. 相似文献