首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   34篇
  2022年   3篇
  2021年   4篇
  2018年   1篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   12篇
  2011年   17篇
  2010年   5篇
  2009年   6篇
  2008年   8篇
  2007年   12篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   7篇
  2002年   10篇
  2001年   6篇
  2000年   4篇
  1999年   13篇
  1998年   2篇
  1997年   7篇
  1996年   7篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   8篇
  1991年   10篇
  1990年   10篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   6篇
  1985年   7篇
  1984年   8篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
排序方式: 共有268条查询结果,搜索用时 15 毫秒
1.
Mycelium of Agaricus bisporus took up methylamine (MA), glutamate, glutamine and arginine by high-affinity transport systems following Michaelis-Menten kinetics. The activities of these systems were influenced by the nitrogen source used for mycelial growth. Moreover, MA, glutamate and glutamine uptakes were derepressed by nitrogen starvation, whereas arginine uptake was repressed. The two ammonium-specific transport systems with different affinities and capacities were inhibited by NH(+)(4), with a K(i) of 3.7 microM for the high-velocity system. The K(m) values for glutamate, glutamine and arginine transport were 124, 151 and 32 microM, respectively. Inhibition of arginine uptake by lysine and histidine showed that they are competitive inhibitors. MA, glutamate and glutamine uptake was inversely proportional to the intracellular NH(+)(4) concentration. Moreover, increase of the intracellular NH(+)(4) level caused by PPT (DL-phosphinotricin) resulted in an immediate cessation of MA, glutamine and glutamate uptake. It seems that the intracellular NH(+)(4) concentration regulates its own influx by feedback-inhibition of the uptake system and probably also its efflux which becomes apparent when mycelium is grown on protein. Addition of extracellular NH(+)(4) did not inhibit glutamine uptake, suggesting that NH(+)(4) and glutamine are equally preferred nitrogen sources. The physiological importance of these uptake systems for the utilization of nitrogen compounds by A. bisporus is discussed.  相似文献   
2.
Crosslinking of membrane skeletal proteins such as spectrin by oxidation of their SH-groups can be provoked by treatment of intact erythrocytes with diamide. Shortly after exposure of human erythrocytes to diamide and despite the transverse destabilization of the lipid bilayer that was observed in these cells (Franck, P.F.H., Op den Kamp, J.A.F., Roelofsen, B. and Van Deenen, L.L.M. (1986) Biochim. Biophys. Acta 857, 127-130), no abnormalities could be detected regarding the asymmetric distribution of the phospholipids when probed by either the prothrombinase assay or brief exposure of the cells to a modified phospholipase A2 with enhanced membrane penetrating capacity. This asymmetry appeared to undergo dramatic changes however, when the ATP content of the cytosol had decreased to less than 10% of its original level during prolonged incubation of the treated cells. These observations indicate that the initial maintenance of phospholipid asymmetry in diamide-treated erythrocytes can be solely ascribed to the action of the ATP-dependent aminophospholipid translocase. This view is supported by experiments involving radiolabeled phospholipids of which trace amounts had been inserted into the outer membrane leaflet of diamide-treated red cells and which still showed a preferential translocation of both aminophospholipids in favour of the inner monolayer, be it that the efficiency of the translocase was found to be impaired when compared to control cells.  相似文献   
3.
The ATP-dependent translocation of phospholipids in the plasma membrane of intact Friend erythroleukemic cells (FELCs) was studied in comparison with that in the membrane of mature murine erythrocytes. This was done by following the fate of radiolabeled phospholipid molecules, previously inserted into the outer monolayer of the plasma membranes by using a non-specific lipid transfer protein. The transbilayer equilibration of these probe molecules was monitored by treating the cells--under essentially non-lytic conditions--with phospholipases A2 of different origin. Rapid reorientations of the newly introduced aminophospholipids in favour of the inner membrane leaflet were observed in fresh mouse erythrocytes; the inward translocation of phosphatidylcholine (PC) in this membrane proceeded relatively slow. In FELCs, on the other hand, all three glycerophospholipids equilibrated over both halves of the plasma membrane very rapidly, i.e. within 1 h; nevertheless, an asymmetric distribution in favour of the inner monolayer was only observed for phosphatidylserine (PS). Lowering the ATP-level in the FELCs caused a reduction in the rate of inward translocation of both aminophospholipids, but not of that of PC, indicating that this translocation of PS and phosphatidylethanolamine (PE) is clearly ATP-dependent. Hence, the situation in the plasma membrane of the FELC is rather unique in a sense that, though an ATP-dependent translocase is present and active both for PS and PE, its activity results in an asymmetric distribution of PS, but not of PE. This remarkable situation might be the consequence of the fact that, in contrast to the mature red cell, this precursor cell still lacks a complete membrane skeletal network.  相似文献   
4.
Respiratory pathways in Agaricus bisporus and Scytalidium thermophilum   总被引:1,自引:0,他引:1  
Abstract The respiratory pathways of Agaricus bisporus and Scytalidium thermophilum were studied. A. bisporus appeared to possess both a cyanide-sensitive and a cyanide-insensitive respiration while in S. thermophilum the cyande-insensitive respiration was absent. Growth experiments showed the ecological advantage for A. bisporus under conditions where cytochrome mediated respiration is inhibited.  相似文献   
5.
Summary There appeared to be a clear correlation between the lignin content (% of TS) of several waste and natural materials and their degradability by rumen microorganisms. Materials with lignin contents higher than 25% were not degraded within 72 h. The effects of Kraft pine lignin and some lignin monomers on filter paper degradation, methane production and CMCase activity were tested. Testing these compounds in concentrations comparable to natural conditions showed minor effects. At higher concentrations p-coumaric acid strongly inhibited cellulose degradation and methane production in batch cultures. Influence of lignin compounds on degradation is discussed in relation to structural effects and enzyme or growth inhibition.  相似文献   
6.
During incubation of intact human erythrocytes with sonicated dimyristoylphosphatidylcholine (DMPC) vesicles, the cells change their discoid morphology to form echinocytes and finally give rise to the release of membrane vesicles. In this process, the red cell membrane accumulates DMPC and loses up to 15% of its cholesterol. On the other hand, replacement of 25% of the endogenous phosphatidylcholine species by DMPC without affecting the cholesterol level of the erythrocytes can be achieved by incubation with DMPC/cholesterol (1:1, mol/mol) sonicated vesicles in the presence of the phosphatidylcholine-specific phospholipid-transfer protein from bovine liver. This replacement also gives rise to an echinocytic cell morphology, but no membrane vesiculation can be observed. However, the vesiculation process can as yet be initiated upon a subsequent decrease of the cholesterol level, by incubation of those modified cells in the presence of sonicated vesicles of pure egg phosphatidylcholine. Incubation of native erythrocytes with pure egg phosphatidylcholine vesicles, on the other hand, results in cholesterol depletion, but does neither induce the formation of echinocytes nor the release of membrane vesicles. Cellular ATP levels are not affected during these incubations. From these results, it can be concluded that a decrease in cholesterol content of the erythrocyte membrane is essential for the DMPC-induced vesiculation of those cells.  相似文献   
7.
Fluorescamine was used to assess the transbilayer distribution of phosphatidylethanolamine in the plasma membrane of murine erythroid progenitor cells, CFU-E (colony-forming unit erythroid), at different stages of their differentiation pathway. Intact cells were exposed to increasing concentrations of fluorescamine and the amount of labeled phosphatidylethanolamine was determined by measuring the fluorescence intensity of its fluorescamine derivative. A semilogarithmic plot of the dose-response curve revealed three different pools of phosphatidylethanolamine, representing its fractions in, respectively, the inner- and outer monolayers of the plasma membrane and subcellular membrane systems. These results show that 9-11% of the total cellular phosphatidylethanolamine is present in the outer leaflet and 9-10% of it is located in the inner leaflet of the plasma membrane in early as well as late erythroblasts. This symmetric distribution of phosphatidylethanolamine over the two halves of the bilayer in the plasma membrane of CFU-E is very similar to that observed earlier in the plasma membrane of friend erythroleukaemic cells (Rawyler, Van der Schaft, Roelofsen and Op den Kamp (1985) Biochemistry 24, 1777-1783). These observations imply that the characteristic asymmetric distribution of phosphatidylethanolamine, as is found in mature erythrocytes, is accomplished at a very late stage of erythropoiesis and possibly during enucleation of the cells or shortly thereafter.  相似文献   
8.
The rate of uptake of radioactive phosphatidylcholine molecules of different fatty acid composition in intact erythrocytes as facilitated by a phosphatidylcholine-specific transfer protein has been studied. When trace amounts of radiolabeled phosphatidylcholine molecules are present in donor vesicles consisting of egg phosphatidylcholine and cholesterol, the transfer of the radiolabeled species depends strongly on their fatty acyl composition: dipalmitoylphosphatidylcholine is transferred at the lowest rate, 1-saturated-2-unsaturated species are transferred faster and the highest rate is observed for dioleoyl phosphatidylcholine. Transfer of the various phosphatidylcholine molecules was measured furthermore using donor systems in which the bulk phosphatidylcholine was varied in its fatty acyl composition. Also in this type of experiment, the transfer protein preferentially stimulated transfer of unsaturated phosphatidylcholine molecules, especially from an environment containing more saturated molecules. Finally, the efflux of labeled phosphatidylcholine from intact erythrocytes to plasma in the absence of the phosphatidylcholine-specific transfer protein was studied and it became clear that in this case the nature of the effused molecules itself, rather than the composition of the bulk lipids, determined the effuse rates. An important conclusion to be drawn from these experiments is that radiolabeled phosphatidylcholine molecules, when used as markers for phospholipid exchange or transfer, should resemble in their fatty acid composition the composition of the bulk lipid in order to provide reliable data on rates and extents of the process studied.  相似文献   
9.
Trace amounts of radiolabeled phospholipids were inserted into the outer membrane leaflet of intact human erythrocytes, using a non-specific lipid transfer protein. Phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine were transferred from the donor lipid vesicles to the membrane of the intact red cell with equal ease, whilst sphingomyelin was transferred 6-times less efficiently. The transbilayer mobility and equilibrium distribution of the labeled phospholipids were assessed by treatment of the intact cells with phospholipases. In fresh erythrocytes, the labeled amino phospholipids appeared to move rapidly towards the inner leaflet. The choline phospholipids, on the other hand, approached an equilibrium distribution which strongly favoured the outer leaflet. In ATP-depleted erythrocytes, the relocation of the amino phospholipids was markedly retarded.  相似文献   
10.
In a previous report it was shown that the replacement of native erythrocyte phosphatidylcholine (PC) with different PC species which have defined acyl chain compositions can lead to morphological changes (Kuypers, F.A., W. Berendsen, B. Roelofsen, J. A. F. Op den Kamp, and L.L.M. van Deenen, 1984, J. Cell Biol., 99:2260-2267). It was proposed that differences in molecular shape between the introduced PC species and normal erythrocyte PC caused the membrane to bend outwards or inwards, depending on the shape of the PC exchanged. To support this proposal, two requirements would have to be fulfilled: the exchange reaction would take place only with the outer lipid monolayer of the erythrocyte, and the extent of lipid transbilayer movement would be restricted. If this theory is correct, any treatment causing unilateral changes in lipid molecular shape should lead to predictable morphological changes. Since this hypothesis is a refinement of the coupled bilayer hypothesis, but so far lacks experimental support, we have sought other means to change lipid molecular shape unilaterally. Shape changes of human erythrocytes were induced by the replacement of native PC by various PC species using a phosphatidylcholine-specific transfer protein: by hydrolysis of phospholipids in intact cells using sphingomyelinase C or phospholipase A2, and by the combination of both procedures. The morphological changes were predictable; additive when both treatments were applied, and explicable on the basis of the geometry of the lipid molecules involved. The results strongly support the notion that lipid molecular shape affects erythrocyte morphology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号