首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   4篇
  28篇
  2011年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2002年   1篇
  2001年   2篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1990年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Emission of volatile sulfur compounds from spruce trees   总被引:2,自引:0,他引:2       下载免费PDF全文
Spruce (Picea Abies L.) trees from the same clone were supplied with different, but low, amounts of plant available sulfate in the soil (9.7-18.1 milligrams per 100 grams of soil). Branches attached to the trees were enclosed in a dynamic gas exchange cuvette and analyzed for the emission of volatile sulfur compounds. Independent of the sulfate supply in the soil, H2S was the predominant reduced sulfur compound continuously emitted from the branches with high rates during the day and low rates in the night. In the light, as well as in the dark, the rates of H2S emission increased exponentially with increasing water vapor flux from the needles. Approximately 1 nanomole of H2S was found to be emitted per mole of water. When stomata were closed completely, only minute emission of H2S was observed. Apparently, H2S emission from the needles is highly dependent on stromatal aperture, and permeation through the cuticle is negligible. In several experiments, small amounts of dimethylsulfide and carbonylsulfide were also detected in a portion of the samples. However, SO2 was the only sulfur compound consistently emitted from branches of spruce trees in addition to H2S. Emission of SO2 mainly proceeded via an outburst starting before the beginning of the light period. The total amount of SO2 emitted from the needles during this outburst was correlated with the plant available sulfate in the soil. The diurnal changes in sulfur metabolism that may result in an outburst of SO2 are discussed.  相似文献   
2.
Temperature dependencies of stem dark respiration (R(d)) and light-driven bark photosynthesis (A(max)) of two temperate tree species (Fagus sylvatica and Betula pendula) were investigated to estimate their probable influence on stem carbon balance. Stem R(d) was found to increase exponentially with increasing temperatures, whereas A(max) levelled off or decreased at the highest temperatures chosen (35-40 degrees C). Accordingly, a linear relationship between respiratory and assimilatory metabolism was only found at moderate temperatures (10-30 degrees C) and the relationship between stem R(d) and A(max) clearly departed from linearity at chilling (5 degrees C) and at high temperatures (35-40 degrees C). As a result, the proportional internal C-refixation rate also decreased non-linearly with increasing temperature. Temperature response of photosystem II (PSII) photochemistry was also assessed. Bark photochemical yield (Delta F/F(m)') followed the same temperature pattern as bark CO(2) assimilation. Maximum quantum yield of PSII (F(v)/F(m)) decreased drastically at freezing temperatures (-5 degrees C), while from 30 to 40 degrees C only a marginal decrease in F(v)/F(m) was found. In in situ measurements during winter months, bark photosynthesis was found to be strongly reduced. Low temperature stress induced an active down-regulation of PSII efficiency as well as damage to PSII due to photoinhibition. All in all, the benefit of bark photosynthesis was negatively affected by low (<5 degrees C) as well as high temperatures (>30 degrees C). As the carbon balance of tree stems is defined by the difference between photosynthetic carbon gain and respiratory carbon loss, this might have important implications for accurate modelling of stem carbon balance.  相似文献   
3.
Photosynthetic irradiance response of vegetative and reproductive structures of the green-flowered deciduous perennial green hellebore was studied by the comparative use of chlorophyll (Chl) fluorescence techniques and gas exchange measurements. All the Chl-containing organs (leaves, sepals, stalks, and fruits) examined were photosynthetically active showing high intrinsic efficiencies of photosystem 2 (Fv/Fm: 0.75–0.79) after dark adaptation. Even in the smaller fertile and sterile parts of the flower (nectaries and anthers) a remarkable photosynthetic competence was detected. With increasing photon flux densities (PFD) electron transport rates, actual quantum yields, and photochemical quenching coefficients of the main photosynthetic organs decreased in the order: leaf>sepal>fruit>stalk. At moderate to high PFDs the sepals achieved maximum electron transport rates corresponding to about 80 % of concomitant mature leaves. In contrast, maximum net photosynthetic rate of the sepals [2.3 mol(CO2) m–2 s–1] were less than one fourth of the leaves [10.6 mol(CO2) m–2 s–1]. This difference is explained by a 70–80 % lower stomatal density of sepals in comparison to leaves. As the basal leaves emerge late during fruit development, the photosynthetically active sepals are a major source of assimilates, contributing more than 60 % of whole-plant CO2 gain in early spring. The ripening dehiscent fruits are characterized by an effective internal re-fixation of the respirational carbon loss and thus additionally improve the overall carbon budget.  相似文献   
4.
In illuminated stems and branches, CO2 release is often reduced. Many light-triggered processes are thought to contribute to this reduction, namely photorespiration, corticular photosynthesis or even an inhibition of mitochondrial respiration. In this study, we investigated these processes with the objective to discriminate their influence to the overall reduction of branch CO2 release in the light. CO2 gas-exchange measurements of young birch (Betula pendula Roth.) branches (< 1.5 cm) performed under photorespiratory (20% O2) and non-photorespiratory (< 2%) conditions revealed that photorespiration does not play a pre-dominant role in carbon exchange. This suppression of photorespiration was attributed to the high CO2 concentrations (C(i)) within the bark tissues (1544 +/- 227 and 618 +/- 43 micromol CO2 mol(-1) in the dark and in the light, respectively). Changes in xylem CO2 were not likely to explain the observed decrease in stem CO2 release as gas-exchange measurements before and after cutting of the branches did not effect CO2 efflux to the atmosphere. Combined fluorescence and gas-exchange measurements provided evidence that the light-dependent reduction in CO2 release can pre-dominantly be attributed to corticular refixation, whereas an inhibition of mitochondrial respiration in the light is unlikely to occur. Corticular photosynthesis was able to refix up to 97% of the CO2 produced by branch respiration, although it rarely led to a positive net photosynthetic rate.  相似文献   
5.
Transpiration and photosynthesis of current-year stems and adult leaves of different deciduous tree species were investigated to estimate their probable influence on carbon balance. Peridermal transpiration of young stems was found to be rather small as compared to the transpiration of leaves (stem/leaf like 1/5–1/20). A characteristic that was mainly attributable to the lower peridermal conductance to water and CO2, which made up only 8–28% of stomatal conductance. Water vapour conductance was significantly lower in stems, but also non-responsive to PAR, which led to a comparatively higher water use efficiency (WUE, ratio assimilation/transpiration). Thus, although corticular photosynthesis reached only 11–37% of leaf photosynthesis, it may be a means of improving the carbon balance of stems under limited water availability. The influence of drought stress on primary photosynthetic reactions was also studied. Under simulated drought conditions the drying time needed to provoke a 50% reduction (t 50) in dark- and light-adapted PSII efficiency (Fv/Fm, ΔF/Fm′) was up to ten times higher in stems than in leaves. Nevertheless, up to a relative water deficit (RWD) of around 40–50% dark-adapted PSII efficiency of leaves and stems was rather insensitive to dehydration, showing that the efficiency of open PS II reaction centres is not impaired. Thus, it may be concluded that in stems as well as in leaves the primary site of drought damage is at the level of dark enzyme reactions and not within PSII. However, enduring severe drought caused photoinhibitory damage to the photosynthetic apparatus of leaves and stems; thereby RWD50 values (= RWD needed to provoke a 50% reduction in Fv/Fm ad ΔF/Fm′) were comparably lower in stems as compared to leaves, indicating a possibly higher drought sensitivity of the cortex chlorenchyma.  相似文献   
6.
Bark photosynthesis   总被引:1,自引:0,他引:1  
  相似文献   
7.
The hypothesis that lenticels may act as a gate for light penetration through the highly light absorptive periderm, was investigated. Yet, transmittance of isolated periderms from ten tree species was considerably higher in the non-lenticel than in the lenticel regions. Depending on species, the lower transmittance of lenticels was due to either higher reflectance and/or higher absorptance. Corticular tissue regions below lenticels were more shade acclimated. Chlorophyll fluorescence images showed lower PS II effective yields, a lower potential for non-photochemical quenching and a possibly higher risk of photoinhibition in the corticular areas under the lenticels in most of the cases.  相似文献   
8.
Vodnik  D.  Pfanz  H.  Maček  I.  Kastelec  D.  Lojen  S.  Batič  F. 《Photosynthetica》2002,40(4):575-579
High abundance of cockspur (Echinochloa crus-galli) at the geothermal carbon dioxide spring area in Staveinci indicates that this species is able to grow under widely varying CO2 concentrations. Living cockspur plants can even be found very close to gas-releasing vents where growth is significantly reduced. Plant height correlated well with CO2 exposure. The 13C value of the CO2 spring air was –3.9 and 13C values of high-, medium-, and low-CO2 plants were –10.14, –10.44, and –11.95 , respectively. Stomatal response directly followed the prevailing CO2 concentrations, with the highest reduction of stomatal conductance in high CO2 concentration grown plants. Analysis of the curves relating net photosynthetic rate to intercellular CO2 concentration (P N-Ci curves) revealed higher CO2 compensation concentration in plants growing at higher CO2 concentration. This indicates adjustment of respiration and photosynthetic carbon assimilation according to the prevailing CO2 concentrations during germination and growth. There was no difference in other photosynthetic parameters measured.  相似文献   
9.
O. L. Lange  H. Pfanz  E. Kilian  A. Meyer 《Planta》1990,182(3):467-472
Earlier experiments (T.D. Brock 1975, Planta124, 13–23) addressed the question whether the fungus of the lichen thallus might enable the algal component to function when moisture stress is such that the algal component would be unable to function under free-living conditions. It was concluded that the liberated phycobiont in ground lichen thalli could not photosynthesize at water potentials as low as those at which the same alga could when it was present within the thallus. However, our experience with lichen photosynthesis has not substantiated this finding. Using instrumentation developed since the mid-1970's to measure photosynthesis and control humidity, we repeated Brock's experiments. When applying “matric” water stress (equilibrium with air of constant relative humidity) we were unable to confirm the earlier results for three lichen species including one of the species,Letharia vulpina, had also been used by Brock. We found no difference between the effects of low water potential on intact lichens and their liberated algal components (ground thallus material and isolated algae) and no indication that the fungal component of the lichen symbiosis protects the phycobiont from the adverse effects of desiccation once equilibrium conditions are reached. The photosynthetic apparatus of the phycobiont alone proved to be highly adapted to water stress as it possesses not only the capability of functioning under extremely low degrees of hydration but also of becoming reactivated solely by water vapor uptake.  相似文献   
10.
Pfanz H  Heber U 《Plant physiology》1986,81(2):597-602
Since environmental pollution by potentially acidic gases such as SO2 causes proton release inside leaf tissues, homogenates of needles of spruce (Picea abies) and fir (Abies alba) and of leaves of spinach (Spinacia oleracea) and barley (Hordeum vulgare) were titrated and buffer capacities were determined as a function of pH. Titration curves of barley leaves were compared with titration curves of barley mesophyll protoplasts. From the protoplasts, chloroplasts and vacuoles were isolated and subjected to titration experiments. From the titration curves, the intracellular distribution of buffering capacities could be deduced. Buffering was strongly pH-dependent. It was high at the extremes of pH but still significant close to neutrality. Owing to its large size, the vacuole was mainly responsible for cellular buffering. However, on a unit volume basis, the cytoplasm was much more strongly buffered than the vacuole. Potentially acidic gases are trapped in the anionic form. They release protons when trapped. The magnitude of diffusion gradients from the atmosphere into the cells, which determines flux, depends on intracellular pH. In the light, the chloroplast stroma, as the most alkaline leaf compartment, has the highest trapping potential. Acidification of the chloroplast stroma inhibits photosynthesis. The trapping potential of the chloroplast is followed by that of the cytosol. Compared with the cytoplasm, the vacuole possesses little trapping potential in spite of its large size. It is particularly small in the acidic vacuoles of conifer needles. In the physiological pH range (slightly above neutrality), chloroplast buffering was about 1 microequivalents H+ per milligram chlorophyll per pH unit or 35 microequivalents H+ per milliliter per pH unit in barley or spinach chloroplasts. This compares with SO2-generated H+ production of somewhat more than 1 microequivalent H+ per milligram chlorophyll per hour, which results from observed SO2 uptake of leaves when stomata were open and the atmospheric SO2 concentration was 0.4 microliters per liter (GE Taylor Jr, DT Tingey 1983 Plant Physiol 72: 237-244). At lower SO2 concentrations, similar H+ generation inside the cells requires correspondingly longer exposure times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号