首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   9篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2001年   3篇
  1999年   6篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1978年   1篇
  1977年   2篇
  1971年   1篇
  1964年   1篇
  1952年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
Near-UV irradiation in the presence of vanadate cleaves the heavy chain of myosin subfragment 1 at three specific sites located at 23, 31, and 74 kDa from the N-terminus. Increasing the pH from 6.0 to 8.5, gradually, reduces the efficiency of the cleavage and completely eliminates the 31-kDa cut. Actin specifically inhibits the photocleavage at the sites located 31 and 74 kDa from the N-terminus. ATP strongly protects from cleavage at the 23- and 31-kDa sites and less strongly from the cut at the 74-kDa site. ADP and pyrophosphate have similar, but less pronounced, effects as ATP. Orthophosphate inhibits the photocleavage at the 23- and 74-kDa sites with a similar efficiency. In the ternary actin-S-1-ATP complex, the photocleavage is inhibited at all sites, and the effects of actin and ATP are additive. Photocleavages affect the K+(EDTA)-, Ca2(+)-, and actin-activated ATPase activity of subfragment 1. Loss of all three ATPases is caused by cleavage at the 23-kDa site, while the cut at the 74-kDa site only leads to the loss of actin-activated ATPase activity. It is concluded that subfragment 1 contains at least two distinct phosphate binding sites, the first being part of the "consensus" ATP binding site wherein the 23-kDa photocleavage site is located. This site is responsible for the binding and hydrolysis of ATP. It is possible that the 31-kDa cleavage site is also associated with the "consensus" site through a loop. The 74-kDa cleavage site is a part of another phosphate binding site which may play a role in the regulation of the myosin-actin interaction.  相似文献   
2.
3.
Thymidyl-3,5-thymidine H-phosphonate undergoes acid, base, and water-catalyzed hydrolysis. The products were 3-thymidine H-phosphonate, 5-thymidine H-phosphonate, and thymidine in a ratio of 1:1:2. The rate constants are 1.8 × 10-3 M-1 sec-1, 7.2 × 103 M-1 sec-1, and 1.5 × 10-6 sec-1 for acid, base and water catalysis, respectively. These values are comparable with previous reports for the rates of hydrolysis of simple dialkyl esters of phosphorous acids. The Arrhenius activation energy for the base-catalyzed reaction is 20 kcal/mol. and the enthalpy and entropy of activation are 19 kcal/mol and –14 eu., respectively. The Gibbs free energy of activation is 23 kcal/mol. The rate constants suggest that nucleic acids linked by diesters of phosphorous acid hydrolyze too rapidly in aqueous solution to have accumulated in useful amounts on the primitive Earth.  相似文献   
4.
The voltage sensor (VS) domain of voltage-gated ion channels underlies the electrical excitability of living cells. We simulate a mesoscale model of the VS domain to determine the functional consequences of some of its physical elements. Our mesoscale model is based on VS charges, linear dielectrics, and whole-body motion, applied to an S4 "sliding helix." The electrostatics under voltage-clamped boundary conditions are solved consistently using a boundary-element method. Based on electrostatic configurational energy, statistical-mechanical expectations of the experimentally observable relation between displaced charge and membrane voltage are predicted. Consequences of the model are investigated for variations of S4 configuration (α- and 3(10)-helical), countercharge alignment with S4 charges, protein polarizability, geometry of the gating canal, screening of S4 charges by the baths, and fixed charges located at the bath interfaces. The sliding-helix VS domain has an inherent electrostatic stability in the explored parameter space: countercharges present in the region of weak dielectric always retain an equivalent S4 charge in that region but allow sliding movements displacing 3-4 e (0). That movement is sensitive to small energy variations (<2?kT) along the path dependent on a number of electrostatic parameters tested in our simulations. These simulations show how the slope of the relation between displaced charge and voltage could be tuned in a channel.  相似文献   
5.
The effect of ionic strength on the conformation and stability of S1 and S1-nucleotide-phosphate analog complexes in solution was studied. It was found that increasing concentration of KCl enhances the reactivity of Cys(707) (SH1 thiol) and Lys(84) (reactive lysyl residue) and the nucleotide-induced tryptophan fluorescence increment. In contrast, high KCl concentration lowers the structural differences between the intermediate states of ATP hydrolysis in the vicinity of Cys(707), Trp(510) and the active site, possibly by increasing the flexibility of the molecule. High concentrations of neutral salts inhibit both the formation and the dissociation of the M**.ADP.Pi analog S1.ADP.Vi complex. High ionic strength profoundly affects the structure of the stable S1.ADP.BeF(x) complex, by destabilizing the M*.ATP intermediate, which is the predominant form of the complex at low ionic strength, and shifting the equilibrium to favor the M**.ADP.Pi state. The M*.ATP intermediate is destabilized by perturbation of ionic interactions possibly by disruption of salt bridges. Two salt-bridge pairs, Glu(501)-Lys(505) in the Switch II helix and Glu(776)-Lys(84) connecting the catalytic domain to the lever arm, seem most appropriate to consider for participating in the ionic strength-induced transition of the open M*.ATP to the closed M**.ADP.Pi state of S1.  相似文献   
6.
7.
8.
9.
Inorganic phosphate (Pi) and cofilin/actin depolymerizing factor proteins have opposite effects on actin filament structure and dynamics. Pi stabilizes the subdomain 2 in F-actin and decreases the critical concentration for actin polymerization. Conversely, cofilin enhances disorder in subdomain 2, increases the critical concentration, and accelerates actin treadmilling. Here, we report that Pi inhibits the rate, but not the extent of cofilin binding to actin filaments. This inhibition is also significant at physiological concentrations of Pi, and more pronounced at low pH. Cofilin prevents conformational changes in F-actin induced by Pi, even at high Pi concentrations, probably because allosteric changes in the nucleotide cleft decrease the affinity of Pi to F-actin. Cofilin induced allosteric changes in the nucleotide cleft of F-actin are also indicated by an increase in fluorescence emission and a decrease in the accessibility of etheno-ADP to collisional quenchers. These changes transform the nucleotide cleft of F-actin to G-actin-like. Pi regulation of cofilin binding and the cofilin regulation of Pi binding to F-actin can be important aspects of actin based cell motility.  相似文献   
10.
Peyser YM  Shaya S  Ajtai K  Burghardt TP  Muhlrad A 《Biochemistry》2003,42(43):12669-12675
High concentration of the cosolvent poly(ethylene glycol) (PEG) induces reversible aggregation of skeletal myosin subfragment 1 (S1) and inhibition of its Mg-ATPase activity [Highsmith et al. (1998) Biophys. J. 74, 1465-1472]. In the present work the effect of aggregation on the various steps of the ATPase cycle was studied. The isomerization and hydrolysis steps of the cycle were not affected by S1 aggregation since the formation of the "trapped" S1.MgADP.phosphate analogue complexes, which mimic the prehydrolysis M*ATP and posthydrolysis M**ADP.P(i) transition states, proceeded without any hindrance. Similar conclusions could be reached from the chemical modification of Lys-83 and Cys-707 in the presence of MgATP and MgATPgammaS, which indicated that the most populated intermediate of the cycle in solubilized and aggregated S1 is M**ADP.P(i). The dissociation of the trapped S1.MgADP.phosphate analogue complexes resembling the M**ADP.P(i) state was strongly inhibited by PEG-6000, showing that the transition from this intermediate is prevented by the aggregation. This step is presumably inhibited because the coupled swinging of the lever arm from the closed to the open position is constrained by the close packing of aggregated S1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号