首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  2022年   2篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2006年   2篇
  2005年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
Neurochemical Research - Obesity is characterized by chronic inflammation of low grade. The cholinergic anti-inflammatory pathway favors the reduction of the inflammatory response. In this work the...  相似文献   
2.
Analogs of pralidoxime, which is a commercial antidote for intoxication from neurotoxic organophosphorus compounds, were designed, synthesized, characterized, and tested as potential inhibitors or reactivators of acetylcholinesterase (AChE) using the Ellman’s test, nuclear magnetic resonance, and molecular modeling. These analogs include 1-methylpyridine-2-carboxaldehyde hydrazone, 1-methylpyridine-2-carboxaldehyde guanylhydrazone, and six other guanylhydrazones obtained from different benzaldehydes. The results indicate that all compounds are weak AChE reactivators but relatively good AChE inhibitors. The most effective AChE inhibitor discovered was the guanylhydrazone derived from 2,4-dinitrobenzaldehyde and was compared with tacrine, displaying similar activity to this reference material. These results indicate that guanylhydrazones as well as future similar derivatives may function as drugs for the treatment of Alzheimer's disease.  相似文献   
3.
4.
Ketamine, an antagonist of N‐methyl‐d ‐aspartate receptors, has produced rapid antidepressant effects in patients with depression, as well as in animal models. However, the extent and duration of the antidepressant effect over longer periods of time has not been considered. This study evaluated the effects of single dose of ketamine on behavior and oxidative stress, which is related to depression, in the brains of adult rats subjected to maternal deprivation. Deprived and nondeprived Wistar rats were divided into four groups nondeprived + saline; nondeprived + S‐ketamine (15 mg/kg); deprived + saline; deprived + S‐ketamine (15 mg/kg). A single dose of ketamine or saline was administrated during the adult phase, and 14 days later depressive‐like behavior was assessed. In addition, lipid damage, protein damage, and antioxidant enzyme activities were evaluated in the rat brain. Maternal deprivation induces a depressive‐like behavior, as verified by an increase in immobility and anhedonic behavior. However, a single dose of ketamine was able to reverse these alterations, showing long‐term antidepressant effects. The brains of maternally deprived rats had an increase in protein oxidative damage and lipid peroxidation, but administration of a single dose of ketamine reversed this damage. The activities of antioxidant enzymes superoxide dismutase and catalase were reduced in the deprived rat brains. However, ketamine was also able to reverse these changes. In conclusion, these findings indicate that a single dose of ketamine is able to induce long‐term antidepressant effects and protect against neural damage caused by oxidative stress in adulthood rats following maternal deprivation. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1268–1281, 2015  相似文献   
5.
6.
Many biological properties have been attributed to ruthenium complexes including anti-tumor activity and the attenuation of reperfusion damage and infarct size. In this work, we characterize the antioxidant activity of trans-[RuCl2(nic)4] where nic is 3-pyridinecarboxylic acid and trans-[RuCl2(i-nic)4] where i-nic is 4-pyridinecarboxylic acid by (i) evaluation of total antioxidant potential (TRAP); (ii) prevention of DNA damage induced by hydrogen peroxide using the alkaline comet assay; and (iii) the prevention of lipid peroxidation and cell death induced by iron in liver slices. Our results suggest that nic has stronger antioxidant potential when compared to the i-nic. Higher doses (above 200 microM) of these compounds gave genotoxic effects, but the antioxidant potential could be obtained with the use lower doses (0.1-10 microM).  相似文献   
7.
Studies have demonstrated that oxidative stress is associated with amphetamine-induced neurotoxicity, but little is known about the adaptations of antioxidant enzymes in the brain after amphetamine exposure. We studied the effects of acute and chronic amphetamine administration on superoxide dismutase (SOD) and catalase (CAT) activity, in a rodent model of mania. Male Wistar rats received either a single IP injection of d-amphetamine (1 mg/kg, 2 mg/kg, or 4 mg/kg) or vehicle (acute treatment). In the chronic treatment rats received a daily IP injection of either d-amphetamine (1 mg/kg, 2 mg/kg, or 4 mg/kg) or vehicle for 7 days. Locomotor behavior was assessed using the open field test. SOD and CAT activities were measured in the prefrontal cortex, hippocampus, and striatum. Acute and to a greater extent chronic amphetamine treatment increased locomotor behavior and affected SOD and CAT activities in the prefrontal cortex, hippocampus and striatum. Our findings suggest that amphetamine exposure is associated with an imbalance between SOD and CAT activity in the prefrontal cortex, hippocampus and striatum.  相似文献   
8.
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) are important for the maintenance of brain homeostasis. During sepsis, peripheral production of proinflammatory cytokines and reactive oxygen species are responsible for structural alterations in those brain barriers. Thus, an increasing permeability of these barriers can lead to the activation of glial cells such as microglia and the production of cytotoxic mediators which in turn act on the brain barriers, damaging them further. Thereby, in this review, we try to highlight how the brain barrier’s permeability is not only a cause but a consequence of brain injury in sepsis.  相似文献   
9.
Depression is a debilitating mental disease that affects a large number of people globally; however the pathophysiological mechanisms of this disease remain incompletely understood. Some studies have shown that depression is associated with inflammatory activity, and the mode of action of several antidepressants appears to involve immunomodulation. In this case, the induction of a pro-inflammatory state in healthy or depressive subjects induces a ‘sickness behaviour’ resembling depressive symptomatology. Potential mechanisms of pro-inflammatory cytokines are effects on monoamine levels, disruption of the hypothalamic–pituitary–adrenal axis, activation of the pathological microglial cells, such as the macrophages and alterations in neuroplasticity and brain functions. Thus, this review will highlight the role of inflammation in depression, the possible mechanisms involved, and also explore effective treatments that act on the immune system.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号