首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   20篇
  国内免费   1篇
  2021年   3篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   4篇
  2014年   9篇
  2013年   9篇
  2012年   11篇
  2011年   12篇
  2010年   6篇
  2009年   9篇
  2008年   12篇
  2007年   13篇
  2006年   9篇
  2005年   8篇
  2004年   8篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  1999年   4篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1958年   1篇
  1951年   1篇
  1950年   1篇
  1924年   1篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
1.
2.
Localized P1 mutagenesis was used to screen for conditionally lethal mutations in ribosomal protein genes. One such mutation, 2859mis, has been mapped inside the ribosomal protein gene cluster at 72 minutes on the Escherichia coli chromosome and cotransduces at 98% with rpsE (S5). The 2869mis mutation leads to thermosensitivity and impaired assembly in vivo of 50 S ribosomal particles at 42 °C. The strain carrying the mutation has an altered L24 ribosomal protein which at 42 °C shows weaker affinity for 23 S RNA than the wild-type protein. The mutational alteration involves a replacement of glycine by aspartic acid in protein L24 from the mutant. We conclude therefore that the 2859mis mutation affects the structural gene for protein L24 (rplX).  相似文献   
3.
MAJOR CLADES OF THE ANGIOSPERMS   总被引:2,自引:0,他引:2  
Abstract— Our knowledge of fundamental angiosperm interrelationships is still very incomplete. The absence of a narrowly circumscribed gymnosperm outgroup, ideally the sister group, makes character evaluation, necessary for a cladistic analysis, difficult. According to current views the superorder Magnoliiflorae with a number of other groups, for example the monocotyledons, may represent a complex of families near the base of the angiosperms. Interrelationships of groups within the monocotyledons are much better understood than those between groups within the dicotyledons. A cladogram of monocotyledon orders based on earlier work by R. Dahlgren, H. T. Clifford, and F. N. Rasmussen is presented. A data matrix for a sample of the angiosperms with 61 characters for 49 taxa, mostly magnoliifloran and related families, is presented. The characters are polarized mainly according to the current view that the primitive angiosperm morphotype is a woody dicotyledon with strobiloid flowers. As an alternative the matrix is adjusted following W. C. Burger's conjecture that the primitive angiosperm was a herbaceous monocotyledon with trimerous flowers. Both matrices were run in a computerized parsimony analysis, resulting in numerous equally parsimonious solutions. This result is illustrative of the great homoplasy in the available character information, and also of how little actually is known about fundamental angiosperm interrelationships or phylogeny.  相似文献   
4.
In order to study the relationships among mammalian alpha-globin genes, we have determined the sequence of the 3' flanking region of the human alpha 1 globin gene and have made pairwise comparisons between sequenced alpha-globin genes. The flanking regions were examined in detail because sequence matches in these regions could be interpreted with the least complication from the gene duplications and conversions that have occurred frequently in mammalian alpha-like globin gene clusters. We found good matches between the flanking regions of human alpha 1 and rabbit alpha 1, human psi alpha 1 and goat I alpha, human alpha 2 and goat II alpha, and horse alpha 1 and goat II alpha. These matches were used to align the alpha-globin genes in gene clusters from different mammals. This alignment shows that genes at equivalent positions in the gene clusters of different mammals can be functional or nonfunctional, depending on whether they corrected against a functional alpha-globin gene in recent evolutionary history. The number of alpha-globin genes (including pseudogenes) appears to differ among species, although highly divergent pseudogenes may not have been detected in all species examined. Although matching sequences could be found in interspecies comparisons of the flanking regions of alpha- globin genes, these matches are not as extensive as those found in the flanking regions of mammalian beta-like globin genes. This observation suggests that the noncoding sequences in the mammalian alpha-globin gene clusters are evolving at a faster rate than those in the beta-like globin gene clusters. The proposed faster rate of evolution fits with the poor conservation of the genetic linkage map around alpha-globin gene clusters when compared to that of the beta-like globin gene clusters. Analysis of the 3' flanking regions of alpha-globin genes has revealed a conserved sequence approximately 100-150 bp 3' to the polyadenylation site; this sequence may be involved in the expression or regulation of alpha-globin genes.   相似文献   
5.
INTRODUCTI0NThedifferentiati0nofcelIsalongthemonocyte-macr0phagepathwayandthesig-nalsinvo1vedinthesecel1sacquiringtheabilitytokilltum0rcellsarenotfllllyundersto0d.Wehavebeenstudingamoleculewhichappearst0beanimportantmemberofthecytokinenetworkinvo1vedintheregulati0nmonocyteactivation.ThiscytokinetermedP48wasisolatedfr0mthehllmannullcellleukemiacell1ineReh.IthasbeenpurifiedtohomogeneityandfOundtobedistinctfrominterferongamma,col0nystimulatingfactors(CSFs)andTNFalphaalldbeta[1,2].Func-ti…  相似文献   
6.

Background

There is a rapidly expanding literature on the application of complex networks in economics that focused mostly on stock markets. In this paper, we discuss an application of complex networks to study international business cycles.

Methodology/Principal Findings

We construct complex networks based on GDP data from two data sets on G7 and OECD economies. Besides the well-known correlation-based networks, we also use a specific tool for presenting causality in economics, the Granger causality. We consider different filtering methods to derive the stationary component of the GDP series for each of the countries in the samples. The networks were found to be sensitive to the detrending method. While the correlation networks provide information on comovement between the national economies, the Granger causality networks can better predict fluctuations in countries’ GDP. By using them, we can obtain directed networks allows us to determine the relative influence of different countries on the global economy network. The US appears as the key player for both the G7 and OECD samples.

Conclusion

The use of complex networks is valuable for understanding the business cycle comovements at an international level.  相似文献   
7.
Under natural conditions, plants are subjected to continuous changes of irradiance that drive variations of stomatal conductance to water vapour (gs). We propose a dynamic model to predict the temporal response of gs at the leaf level using an asymmetric sigmoid function with a unique parameter describing time constants for increasing and decreasing gs. The model parameters were adjusted to observed data using Approximate Bayesian Computation. We tested the model performance for (1) instant changes of irradiance; or (2) continuous and controlled variations of irradiance simulating diurnal time courses. Compared with the two mostly used steady‐state models, our dynamic model described daily time courses of gs with a higher accuracy. In particular, it was able to describe the hysteresis of gs responses to increasing/decreasing irradiance and the resulting rapid variations of intrinsic water‐use efficiency. Compared to the mechanistic model of temporal responses of gs by Kirschbaum, Gross & Pearcy, for which time constants were estimated with a large variance, our model estimated time constants with a higher precision. It is expected to improve predictions of water loss and water‐use efficiency in higher scale models by using a small number of parameters.  相似文献   
8.
Rust fungal pathogens of wheat (Triticum spp.) affect crop yields worldwide. The molecular mechanisms underlying the virulence of these pathogens remain elusive, due to the limited availability of suitable molecular genetic research tools. Notably, the inability to perform high-throughput analyses of candidate virulence proteins (also known as effectors) impairs progress. We previously established a pipeline for the fast-forward screens of rust fungal candidate effectors in the model plant Nicotiana benthamiana. This pipeline involves selecting candidate effectors in silico and performing cell biology and protein-protein interaction assays in planta to gain insight into the putative functions of candidate effectors. In this study, we used this pipeline to identify and characterize sixteen candidate effectors from the wheat yellow rust fungal pathogen Puccinia striiformis f sp tritici. Nine candidate effectors targeted a specific plant subcellular compartment or protein complex, providing valuable information on their putative functions in plant cells. One candidate effector, PST02549, accumulated in processing bodies (P-bodies), protein complexes involved in mRNA decapping, degradation, and storage. PST02549 also associates with the P-body-resident ENHANCER OF mRNA DECAPPING PROTEIN 4 (EDC4) from N. benthamiana and wheat. We propose that P-bodies are a novel plant cell compartment targeted by pathogen effectors.  相似文献   
9.
The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity.Energy security and climate change as global problems urge increased efforts to use plants as renewable energy sources both for power generation and transportation fuel production. Selected wood species, such as willows (Salix spp.), can be cultivated as short-rotation coppice for the rapid accumulation of biomass and reduction of CO2 emission. Coppicing reinvigorates shoot growth, resulting in a special woody plant life cycle that differs from natural tree development, which takes decades. In this cultivation system, small stem cuttings are planted at high densities (15,000–25,000 ha−1). In the soil, these dormant wood cuttings first produce roots and shoots that emerge from reactivated buds. During the first year, the growing shoots mature to woody stems. In the winter, these stems are cut back, and in the following spring, the cut stumps develop multiple shoots. The short-rotation coppice plantations are characterized by a very short, 2- to 3-year rotation, and the most productive varieties can produce up to 15 tons of oven-dried wood per hectare per year (Cunniff and Cerasuolo, 2011). The high-density willow plantations can also be efficiently used for heavy metal or organic phytoremediation, as reviewed by Marmiroli et al. (2011).The biomass productivity of shrub willows is largely dependent on coppicing capability, early vigorous growth, shoot growth rate and final stem height, root system size, photosynthetic efficiency, formation and composition of woody stems, water and nutrient use, as well as abiotic and biotic stress tolerance. Genetic improvement of all these traits can be based on broad natural genetic resources represented by more than 400 species in the genus Salix. More than 200 species have hybrid origins, and ploidy levels vary from diploid up to dodecaploid (Suda and Argus, 1968; Newsholme, 1992). In addition to molecular marker-assisted clone selection, intraspecific and interspecific crosses have been shown to further extend genetic variability in breeding programs for biomass yield (Karp et al., 2011).During natural diversification and artificial crossings of Salix spp., the willow genomes frequently undergo polyploidization, resulting in triploid or tetraploid allopolyploids. In triploid hybrids, both heterosis and ploidy can contribute to the improved biomass yield (Serapiglia et al., 2014). While the alloploid triploids have attracted considerable attention in willow improvement, the potentials of autotetraploid willow genotypes have not been exploited so far. As shown for other short-rotation wood species (poplar [Populus spp.], black locust [Robinia pseudoacacia], Paulownia spp., and birch [Betula spp.]), doubling the chromosome set by colchicine treatment can cause significant changes in organ morphology or growth parameters (Tang et al., 2010; Cai and Kang, 2011; Harbard et al., 2012; Mu et al., 2012; Wang et al., 2013a, 2013b). In several polyploidization protocols, the in vitro cultured tissues are exposed to different doses of colchicine or other inhibitors of mitotic microtubule function, and plantlets are differentiated from polyploid somatic cells (Tang et al., 2010; Cai and Kang, 2011). Alternatively, seeds or apical meristems of germinating seedlings can be treated with a colchicine solution (Harbard et al., 2012). Allotetraploids of poplar were produced by zygotic chromosome doubling that was induced by colchicine and high-temperature treatment (Wang et al., 2013a).Since tetraploid willow plants with 2n = 4x = 76 chromosomes are expected to represent novel genetic variability, especially for organ development and physiological parameters, a polyploidization project was initiated that was based on a highly productive diploid energy willow (S. viminalis var. Energo). Colchicine treatment of reactivated axillary buds of the in vitro-grown energy willow plantlets resulted in autotetraploid shoots and, subsequently, plants. For comparison of diploid and tetraploid variants of willow plants, digital imaging of green organs and roots was used for phenotyping. Among the tetraploid lines, genotypes were identified with improved biomass production, better photosynthetic parameters, and altered organ structure and hormone composition. The new tetraploid willow variants produced can serve as a unique experimental material to uncover key factors in biomass production in this short-rotation energy plant. In the future, these plants can also serve as crossing partners of diploid lines for the production of novel triploid energy willow genotypes.  相似文献   
10.
Parasite effector proteins target various host cell compartments to alter host processes and promote infection. How effectors cross membrane‐rich interfaces to reach these compartments is a major question in effector biology. Growing evidence suggests that effectors use molecular mimicry to subvert host cell machinery for protein sorting. We recently identified chloroplast‐targeted protein 1 (CTP1), a candidate effector from the poplar leaf rust fungus Melampsora larici‐populina that carries a predicted transit peptide and accumulates in chloroplasts and mitochondria. Here, we show that the CTP1 transit peptide is necessary and sufficient for accumulation in the stroma of chloroplasts. CTP1 is part of a Melampsora‐specific family of polymorphic secreted proteins. Two members of that family, CTP2 and CTP3, also translocate in chloroplasts in an N‐terminal signal‐dependent manner. CTP1, CTP2 and CTP3 are cleaved when they accumulate in chloroplasts, while they remain intact when they do not translocate into chloroplasts. Our findings reveal that fungi have evolved effector proteins that mimic plant‐specific sorting signals to traffic within plant cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号