首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   47篇
  2024年   1篇
  2023年   6篇
  2022年   6篇
  2021年   7篇
  2020年   14篇
  2019年   8篇
  2018年   8篇
  2017年   8篇
  2016年   27篇
  2015年   23篇
  2014年   28篇
  2013年   31篇
  2012年   33篇
  2011年   33篇
  2010年   15篇
  2009年   15篇
  2008年   28篇
  2007年   11篇
  2006年   19篇
  2005年   18篇
  2004年   22篇
  2003年   14篇
  2002年   12篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有431条查询结果,搜索用时 15 毫秒
1.
2.
Synopsis Female scalloped hammerhead sharks move offshore at a smaller size than do males to form schools composed primarily of intermediate size female sharks. This movement results in smaller females feeding more on pelagic prey than do males and with greater predatory success. It is contended that this change in habitat causes females to grow more rapidly to reproductive size. Intermediate size females grow at a more rapid rate than males. Female scalloped hammerhead sharks mature at a size larger than males. For many elasmobranch species, females: (1) occupy a different habitat, (2) grow more rapidly prior to maturity and continue growth following maturation, (3) feed on different prey with increased feeding success, and (4) reproduce at a size larger than males. It is suggested that female segregation increases fitness, resulting in more rapid growth for the former sex. The females reach maturity at the larger size necessary to support embryonic young, yet similar age to males, matching the female reproductive lifetime to that of males.  相似文献   
3.
Proximal tubular epithelial cells from mice which develop autoimmune interstitial nephritis were found to express the nephritogenic target antigen, 3M-1. Anti-3M-1 mAbs (alpha 3M-1-Ab) were used to positively select for 3M-1-secreting tubular epithelium and, after stabilization in culture, this new cell line (MCT) was examined for the production of several moieties important to either immune interactions or to the development of extracellular matrix. Alkaline phosphatase-staining MCT cells also express epithelial growth factor receptors with a Kd of 0.87 nM and an epithelial growth factor receptor constant (Ro) of 2.1 X 10(4) receptors/cell. MCT culture supernatants contain greater amounts of laminin, and types IV and V procollagens compared to types I and III procollagens, and growing MCT cells on type I collagen matrix causes them to preferentially secrete even more type IV and V procollagen. The 30,000-Mr 3M-1 antigen could be immunoprecipitated from biosynthetically labeled MCT cell supernatants with alpha 3M-1-Ab. An identical-sized moiety was isolated by immunoaffinity chromatography from collagenase-solubilized mouse kidney tubular basement membranes. The 3M-1 antigen can be found on the MCT cell surface by radioimmunoassay, or deposited in a linear array in the extracellular matrix surrounding the MCT cells in culture by immunofluorescence. Mature messenger RNA species for both class I and class II major histocompatibility complex (MHC) molecules were detected by Northern hybridization, and their corresponding cell surface gene products were detected by cytofluorography of MCT cells stained with haplotype-specific antibodies. Both the cell surface 3M-1 and the small amounts of detected class II MHC molecules appear to be biologically functional, as MCT cells can support the proliferation of 3M-1-specific, class II MHC-restricted helper T cells in culture. These findings suggest that MCT cells provide all the necessary biological parameters for interfacing both as the target of a nephritogenic immune response, and as a potential source for new extracellular matrix which develops as a fibrogenic response to interstitial nephritis.  相似文献   
4.
In this report, we have examined the effector T cell repertoire in the spontaneous interstitial nephritis of kdkd mice. Lymph node cells from nephritic kdkd mice are capable of transferring this disease into thymectomized, irradiated, and bone marrow-reconstituted CBA/Ca recipients. CBA/Ca mice do not spontaneously develop interstitial nephritis and are normally resistant to the adoptive transfer of nephritic cells, a resistance that in the short term can be attenuated with low-dose cyclophosphamide. We therefore used delayed-type hypersensitivity responses and direct transfer of immune cells under the renal capsule to characterize nephritogenic effector cells from kdkd donor mice. Lyt-2+, L3T4- T cells from the peripheral lymphoid organs of nephritic kdkd mice, after adoptive transfer into cyclophosphamide-pretreated CBA/Ca recipients, mediate an antigen-specific delayed-type hypersensitivity response to renal tubular basement membrane antigens. These cells are restricted by gene products in H-2Kk; they are also present in nephritic, but not in control kidneys. We have also observed this same phenotypic subpopulation of kdkd lymphocytes mediate a destructive interstitial renal lesion within 7 days of being placed under the kidney capsule of CBA/Ca mice. These findings suggest that T lymphocytes reactive to a parenchymal tubular antigen are of substantial importance in the development of spontaneous interstitial nephritis in kdkd mice.  相似文献   
5.
6.
We have used a murine proximal tubule cell line (MCT cells) to determine the presence and binding characteristics of insulin and IGF1 receptors and to correlate these parameters with the concentration-response relationships for ligand-induced cellular proliferation. Separate insulin and IGF1 receptors were identified by equilibrium binding assays. Half-maximal displacement of either peptide occurred at 3-10 nM; crossover binding to the alternate receptor occurred with a 10- to 100-fold lower affinity. Peptide effects on cellular proliferation were determined by measuring [3H]thymidine incorporation. Both insulin and IGF1 stimulate thymidine incorporation in a dose-dependent manner with similar increases above the basal level. The estimated half-maximal stimulation (EC50) occurred at 4 nM for IGF1 and 8 nM for insulin. A comparison of the receptor binding affinities with the dose-response relationships for [3H]thymidine incorporation reveals that each growth factor appears to be exerting its effect via binding to its own receptor. Therefore, in this cell line, physiologic concentrations of either insulin or IGF1 can modulate cellular growth. To our knowledge this is the first demonstration of a mitogenic effect which may be modulated by ligand binding to the insulin receptor in proximal tubule epithelia.  相似文献   
7.
When compared to virgin land (forest and grassland), croplands store significantly lower amounts of organic carbon (OC), mainly as a result of soil tillage, and decreased plant inputs to the soil over the whole year. Doubts have been expressed over how much reduced and zero tillage agriculture can increase OC in soils when the whole soil profile is considered. Consequently, cover-crops that are grown in-between crops instead of leaving soils bare appear as the “last man standing” in our quest to enhance cropland OC stocks. Despite the claim by numerous meta-analyses of a mean carbon sequestration rate by cover crops to be as high as 0.32 ± 0.08 ton C ha−1 year−1, the present analysis showed that all of the 37 existing field studies worldwide only sampled to a depth of 30 cm or less and did not compare treatments on the basis of equivalent soil mass. Thirteen studies presented information on OC content only and not on OC stocks, had inappropriate controls (n = 14), had durations of 3 years or lower (n = 5), considered only one to two data points per treatment (n = 4), or used cover crops as cash crops (i.e., grown longer that in-between two crops) instead of catch crops (n = 2), which in all cases constitutes shortcomings. Of the remaining six trials, four showed non-significant trends, one study displayed a negative impact of cover crops, and one study displayed a positive impact, resulting in a mean OC storage of 0.03 ton ha−1 year−1. Models and policies should urgently adapt to such new figure. Finally, more is to be done not only to improve the design of cover-crop studies for reaching sound conclusions but also to understand the underlying reasons of the low efficiency of cover crops for improved carbon sequestration into soils, with possible strategies being suggested.  相似文献   
8.
Synopsis Oxygen uptake (Vo 2) was measured in carp of approximately 40 cm length swimming at controlled variable oxygen tensions (Po 2). At Po 2> 120 mm Hg Vo 2 increased with an increase in swimming speed from 5.6 to 11.3 cm · sec–1. Extrapolation of Vo 2 to zero activity at Po 2 = 140 mm Hg revealed a standard O2 uptake of 36.7 ml O2 · kg–1 · h–1 at 20° C. At the lowest swimming speed (5.6 cm · s–1) the oxygen uptake increased when the water Po 2 was reduced. A near doubling in Vo 2 was seen at Po 2 = 70 mm Hg compared to 140 mm Hg. At higher swimming speeds in hypoxic water Vo 2 decreased relative to the values at low swimming speeds. As a result the slope of the lines expressing log Vo 2 as a function of swimming speed decreased from positive to negative values with decreasing Po 2 of the water. pH of blood from the caudal vein drawn before and at termination of swimming at Po 2 = 70 mm Hg and 100 mm Hg did not show any decrease in relation to rest values at Po 2 = 140 mm Hg. Blood lactate concentration did not increase during swimming at these tensions.  相似文献   
9.
There is growing international interest in better managing soils to increase soil organic carbon (SOC) content to contribute to climate change mitigation, to enhance resilience to climate change and to underpin food security, through initiatives such as international ‘4p1000’ initiative and the FAO's Global assessment of SOC sequestration potential (GSOCseq) programme. Since SOC content of soils cannot be easily measured, a key barrier to implementing programmes to increase SOC at large scale, is the need for credible and reliable measurement/monitoring, reporting and verification (MRV) platforms, both for national reporting and for emissions trading. Without such platforms, investments could be considered risky. In this paper, we review methods and challenges of measuring SOC change directly in soils, before examining some recent novel developments that show promise for quantifying SOC. We describe how repeat soil surveys are used to estimate changes in SOC over time, and how long‐term experiments and space‐for‐time substitution sites can serve as sources of knowledge and can be used to test models, and as potential benchmark sites in global frameworks to estimate SOC change. We briefly consider models that can be used to simulate and project change in SOC and examine the MRV platforms for SOC change already in use in various countries/regions. In the final section, we bring together the various components described in this review, to describe a new vision for a global framework for MRV of SOC change, to support national and international initiatives seeking to effect change in the way we manage our soils.  相似文献   
10.
Interlocked challenges of climate change, biodiversity loss, and land degradation require transformative interventions in the land management and food production sectors to reduce carbon emissions, strengthen adaptive capacity, and increase food security. However, deciding which interventions to pursue and understanding their relative co‐benefits with and trade‐offs against different social and environmental goals have been difficult without comparisons across a range of possible actions. This study examined 40 different options, implemented through land management, value chains, or risk management, for their relative impacts across 18 Nature's Contributions to People (NCPs) and the 17 Sustainable Development Goals (SDGs). We find that a relatively small number of interventions show positive synergies with both SDGs and NCPs with no significant adverse trade‐offs; these include improved cropland management, improved grazing land management, improved livestock management, agroforestry, integrated water management, increased soil organic carbon content, reduced soil erosion, salinization, and compaction, fire management, reduced landslides and hazards, reduced pollution, reduced post‐harvest losses, improved energy use in food systems, and disaster risk management. Several interventions show potentially significant negative impacts on both SDGs and NCPs; these include bioenergy and bioenergy with carbon capture and storage, afforestation, and some risk sharing measures, like commercial crop insurance. Our results demonstrate that a better understanding of co‐benefits and trade‐offs of different policy approaches can help decision‐makers choose the more effective, or at the very minimum, more benign interventions for implementation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号