首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   7篇
  2012年   6篇
  2011年   1篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1979年   2篇
  1973年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
1.
KV Thomas 《Biofouling》2013,29(1):73-86

Antifouling paint booster biocides are a group of organic compounds added to antifouling paints to improve their efficacy. They have become prevalent since the requirement for alternative antifouling paints formulations for small boats (< 25 m). This need followed a ban on the use of triorganotin biocides in antifouling paints for small boats, in the late 1980's. Worldwide, around eighteen compounds are currently used as antifouling biocides, viz. benzmethylamide, chlorothalonil, copper pyrithione, dichlofluanid, diuron, fluorofolpet, Irgarol 1051, Sea‐Nine 211, Mancozeb, Polyphase, pyridine‐triphenyl‐borane, TCMS (2,3,5,6‐tetrachloro‐4‐methylsulfonyl) pyridine, TCMTB [2‐(thiocyanomethylthio)benzothia‐zole], Thiram, tolyfluanid, zinc pyrithione (ZPT), ziram and Zineb. Any booster biocide released into the environment is subjected to a complex set of processes. These processes include transport mechanisms, transformation, degradation, cross media partitioning, and bioaccumulation. This paper reviews the fate and behaviour data currently available in the public domain concerning antifouling paint booster biocides.  相似文献   
2.

Background

The function of proteins is a direct consequence of their three-dimensional structure. The structural classification of proteins describes the ways of folding patterns all proteins could adopt. Although, the protein folds were described in many ways the functional properties of individual folds were not studied.

Results

We have analyzed two β-barrel folds generally adopted by small proteins to be looking similar but have different topology. On the basis of the topology they could be divided into two different folds named SH3-fold and OB-fold. There was no sequence homology between any of the proteins considered. The sequence diversity and loop variability was found to be important for various binding functions.

Conclusions

The function of Oligonucleotide/oligosaccharide-binding (OB) fold proteins was restricted to either DNA/RNA binding or sugar binding whereas the Src homology 3 (SH3) domain like proteins bind to a variety of ligands through loop modulations. A question was raised whether the evolution of these two folds was through DNA shuffling.  相似文献   
3.
This paper describes a [15N,1H]/[13C,1H]-TROSY experiment for the simultaneous acquisition of the heteronuclear chemical shift correlations of backbone amide 15N–1H groups, side chain 15N–1H2 groups and aromatic 13C–1H groups in otherwise highly deuterated proteins. The 15N–1H and 13C–1H correlations are extracted from two subspectra of the same data set, thus preventing possible spectral overlap of aromatic and amide protons in the 1H dimension. The side-chain 15N–1H2 groups, which are suppressed in conventional [15N,1H)-TROSY, are observed with high sensitivity in the 15N–1H subspectrum. [15N,1H]/[13C,1H]-TROSY was used as the heteronuclear correlation block in a 3D [1H,1H]-NOESY-[15N,1H]/[13C,1H]-TROSY experiment with the membrane protein OmpA reconstituted in detergent micelles of molecular weight 80000 Da, which enabled the detection of numerous NOEs between backbone amide protons and both aromatic protons and side chain 15N–1H2 groups.  相似文献   
4.
TROSY and CRINEPT are new techniques for solution NMR studies of molecular and supramolecular structures. They allow the collection of high-resolution spectra of structures with molecular weights >100 kDa, significantly extending the range of macromolecular systems that can be studied by NMR in solution. TROSY has already been used to map protein-protein interfaces, to conduct structural studies on membrane proteins and to study nucleic acid conformations in multimolecular assemblies. These techniques will help us to investigate the conformational states of individual macromolecular components and will support de novo protein structure determination in large supramolecular structures.  相似文献   
5.
The structural and dynamical consequences of ligand binding to a monofunctional chorismate mutase from Bacillus subtilis have been investigated by solution NMR spectroscopy. TROSY methods were employed to assign 98% of the backbone (1)H(N), (1)H(alpha), (15)N, (13)C', and (13)C(alpha) resonances as well as 86% of the side chain (13)C resonances of the 44 kDa trimeric enzyme at 20 degrees C. This information was used to map chemical shift perturbations and changes in intramolecular mobility caused by binding of prephenate or a transition state analogue to the X-ray structure. Model-free interpretation of backbone dynamics for the free enzyme and its complexes based on (15)N relaxation data measured at 600 and 900 MHz showed significant structural consolidation of the protein in the presence of a bound ligand. In agreement with earlier structural and biochemical studies, substantial ordering of 10 otherwise highly flexible residues at the C-terminus is particularly notable. The observed changes suggest direct contact between this protein segment and the bound ligand, providing support for the proposal that the C-terminus can serve as a lid for the active site, limiting diffusion into and out of the pocket and possibly imposing conformational control over substrate once bound. Other regions of the protein that experience substantial ligand-induced changes also border the active site or lie along the subunit interfaces, indicating that the enzyme adapts dynamically to ligands by a sort of induced fit mechanism. It is believed that the mutase-catalyzed chorismate-to-prephenate rearrangement is partially encounter controlled, and backbone motions on the millisecond time scale, as seen here, may contribute to the reaction barrier.  相似文献   
6.
7.
Coronavirus envelope (E) proteins are short (~100 residues) polypeptides that contain at least one transmembrane (TM) domain and a cluster of 2-3 juxtamembrane cysteines. These proteins are involved in viral morphogenesis and tropism, and their absence leads in some cases to aberrant virions, or to viral attenuation. In common to other viroporins, coronavirus envelope proteins increase membrane permeability to ions. Although an NMR-based model for the TM domain of the E protein in the severe acute respiratory syndrome virus (SARS-CoV E) has been reported, structural data and biophysical studies of full length E proteins are not available because efficient expression and purification methods for these proteins are lacking. Herein we have used a novel fusion protein consisting of a modified β-barrel to purify both wild type and cysteine-less mutants of two representatives of coronavirus E proteins: the shortest (76 residues), from SARS-CoV E, and one of the longest (109 residues), from the infectious bronchitis virus (IBV E). The fusion construct was subsequently cleaved with cyanogen bromide and all polypeptides were obtained with high purity. This is an approach that can be used in other difficult hydrophobic peptides.  相似文献   
8.
The social behavior of Myotis daubentonii bats was studied in experimental groups kept in an openair cage. The repertoire of identification, aggressive, and friendly (integration) behaviors was described. Analysis of their frequencies showed that interactions between the animals were for the most part friendly (61.6%), while aggressive displays were rare (4.6%). Differences in behavior depending on sex and age were revealed: avoidance of contact and aggressive vocalization were observed significantly more frequently in young and adult males than in females. The bats in the experimental groups personally distinguished each other; in group 4, a two-level hierarchy was established (a dominant male vs. all other bats), which could be explained by specific conditions in the open-air cage.  相似文献   
9.
Coronaviruses contain a small envelope membrane protein with cation-selective ion channel activity mediated by its transmembrane domain (ETM). In a computational study, we proposed that ion channel activity can be explained by either of two similar ETM homopentameric transmembrane α-helical bundles, related by a ∼50° rotation of the helices. Later, we tested this prediction, using site-specific infrared dichroism of a lysine-flanked isotopically labeled ETM peptide from the virus responsible for the severe acute respiratory syndrome, SARS, reconstituted in lipid bilayers. However, the data were consistent with the presence of a kink at the center of the ETM α-helix, and it did not fit completely either computational model. Herein, we have used native ETM, without flanking lysines, and show that the helix orientation is now consistent with one of the predicted models. ETM only produced one oligomeric form, pentamers, in the lipid-mimic detergent dodecylphosphocholine and in perfluorooctanoic acid. We thus report the correct backbone model for the pentameric α-helical bundle of ETM. The disruptive effects caused by terminal lysines probably highlight the conformational flexibility required during ion channel function.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号