首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Aβ self-assembles into parallel cross-β fibrillar aggregates, which is associated with Alzheimer''s disease pathology. A central hairpin turn around residues 23–29 is a defining characteristic of Aβ in its aggregated state. Major biophysical properties of Aβ, including this turn, remain unaltered in the central fragment Aβ18–35. Here, we synthesize a single deletion mutant, ΔG25, with the aim of sterically hindering the hairpin turn in Aβ18–35. We find that the solubility of the peptide goes up by more than 20-fold. Although some oligomeric structures do form, solution state NMR spectroscopy shows that they have mostly random coil conformations. Fibrils ultimately form at a much higher concentration but have widths approximately twice that of Aβ18–35, suggesting an opening of the hairpin bend. Surprisingly, two-dimensional solid state NMR shows that the contact between Phe19 and Leu34 residues, observed in full-length Aβ and Aβ18–35, is still intact in these fibrils. This is possible if the monomers in the fibril are arranged in an antiparallel β-sheet conformation. Indeed, IR measurements, supported by tyrosine cross-linking experiments, provide a characteristic signature of the antiparallel β-sheet. We conclude that the self-assembly of Aβ is critically dependent on the hairpin turn and on the contact between the Phe19 and Leu34 regions, making them potentially sensitive targets for Alzheimer''s therapeutics. Our results show the importance of specific conformations in an aggregation process thought to be primarily driven by nonspecific hydrophobic interactions.  相似文献   
2.
Amyloid β (Aβ) fibrillar deposits in the brain are a hallmark of Alzheimer disease (AD). Curcumin, a common ingredient of Asian spices, is known to disrupt Aβ fibril formation and to reduce AD pathology in mouse models. Understanding the structural changes induced by curcumin can potentially lead to AD pharmaceutical agents with inherent bio-compatibility. Here, we use solid-state NMR spectroscopy to investigate the structural modifications of amyloid β(1–42) (Aβ42) aggregates induced by curcumin. We find that curcumin induces major structural changes in the Asp-23–Lys-28 salt bridge region and near the C terminus. Electron microscopy shows that the Aβ42 fibrils are disrupted by curcumin. Surprisingly, some of these alterations are similar to those reported for Zn2+ ions, another agent known to disrupt the fibrils and alter Aβ42 toxicity. Our results suggest the existence of a structurally related family of quasi-fibrillar conformers of Aβ42, which is stabilized both by curcumin and by Zn2+.  相似文献   
3.
Observations like high Zn2+ concentrations in senile plaques found in the brains of Alzheimer''s patients and evidences emphasizing the role of Zn2+ in amyloid-β (Aβ)-induced toxicity have triggered wide interest in understanding the nature of Zn2+-Aβ interaction. In vivo and in vitro studies have shown that aggregation kinetics, toxicity, and morphology of Aβ aggregates are perturbed in the presence of Zn2+. Structural studies have revealed that Zn2+ has a binding site in the N-terminal region of monomeric Aβ, but not much is precisely known about the nature of binding of Zn2+ with aggregated forms of Aβ or its effect on the molecular structure of these aggregates. Here, we explore this aspect of the Zn2+-Aβ interaction using one- and two-dimensional 13C and 15N solid-state NMR. We find that Zn2+ causes major structural changes in the N-terminal and the loop region connecting the two β-sheets. It breaks the salt bridge between the side chains of Asp23 and Lys28 by driving these residues into nonsalt-bridge-forming conformations. However, the cross-β structure of Aβ42 aggregates remains unperturbed though the fibrillar morphology changes distinctly. We conclude that the salt bridge is not important for defining the characteristic molecular architecture of Aβ42 but is significant for determining its fibrillar morphology and toxicity.  相似文献   
4.
Two-dimensional 13C-13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of 13C-13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on 1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.  相似文献   
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号