首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
The three-dimensional crystal structure of the DNA/RNA nonspecific endonuclease from Serratia marcescens was refined at the resolution of 1.07 A to R factor of 12.4% and Rfree factor of 15.3% using the anisotropic approximation. The structure includes 3924 non-hydrogen atoms, 715 protein-bound water molecules, and a Mg2+ ion in each binding site of each subunit of the nuclease homodimeric globular molecule. The 3D topological model of the enzyme was revealed, the inner symmetry of the monomers in its N- and C-termini was found, and the local environment of the magnesium cofactor in the nuclease active site was defined. Mg2+ ion was found to be bound to the Asn119 residue and surrounded by five associated water molecules that form an octahedral configuration. The coordination distances for the water molecules and the O delta 1 atom of Asn119 were shown to be within a range of 2.01-2.11 A. The thermal factors for the magnesium ion in subunits are 7.08 and 4.60 A2, and the average thermal factors for the surrounding water molecules are 11.14 and 10.30 A2, respectively. The region of the nuclease subunit interactions was localized, and the alternative side chain conformations were defined for 51 amino acid residues of the nuclease dimer.  相似文献   
2.
Structural and functional characteristics were compared for wild-type nuclease from Serratia marcescens, which belongs to the family of DNA/RNA nonspecific endonucleases, its mutational forms, and the nuclease I-PpoI from Physarum polycephalum, which is a representative of the Cys-His box-containing subgroup of the superfamily of extremely specific intron-encoded homing DNases. Despite the lack of sequence homology and the overall different topology of the Serratia marcescens and I-PpoI nucleases, their active sites have a remarkable structural similarity. Both of them have a unique magnesium atom in the active site, which is a part of the coordinatively bonded water–magnesium complex involved in their catalytic acts. In the enzyme–substrate complexes, the Mg2+ ion is chelated by an Asp residue, coordinates two oxygen atoms of DNA, and stabilizes the transition state of the phosphate anion and 3"-OH group of the leaving nucleotide. A new mechanism of the phosphodiester bond cleavage, which is common for the Serratia marcescens and I-PpoI nucleases and differs from the known functioning mechanism of the restriction and homing endonucleases, was proposed. It presumes a His residue as a general base for the activation of a non-cluster water molecule at the nucleophilic in line displacement of the 3"-leaving group. A strained metalloenzyme–substrate complex is formed during hydrolysis and relaxes to the initial state after the reaction.  相似文献   
3.
Recent experimental evidence supports the hypothesis that prion proteins (PrPs) are involved in the Cu(II) metabolism. Moreover, the copper binding region has been implicated in transmissible spongiform encephalopathies, which are caused by the infectious isoform of prion proteins (PrP(Sc)). In contrast to mammalian PrP, avian prion proteins have a considerably different N-terminal copper binding region and, most interestingly, are not able to undergo the conversion process into an infectious isoform. Therefore, we applied x-ray absorption spectroscopy to analyze in detail the Cu(II) geometry of selected synthetic human PrP Cu(II) octapeptide complexes in comparison with the corresponding chicken PrP hexapeptide complexes at pH 6.5, which mimics the conditions in the endocytic compartments of neuronal cells. Our results revealed that structure and coordination of the human PrP copper binding sites are highly conserved in the pH 6.5-7.4 range, indicating that the reported pH dependence of copper binding to PrP becomes significant at lower pH values. Furthermore, the different chicken PrP hexarepeat motifs display homologous Cu(II) coordination at sub-stoichiometric copper concentrations. Regarding the fully cation-saturated prion proteins, however, a reduced copper coordination capability is supposed for the chicken prion protein based on the observation that chicken PrP is not able to form an intra-repeat Cu(II) binding site. These results provide new insights into the prion protein structure-function relationship and the conversion process of PrP.  相似文献   
4.
Proteinase K is widely used in tests for the presence of infectious prion protein causing fatal spongiform encephalopathies. To investigate possible interactions between the enzyme and the functionally important N-terminal prion domain, we crystallized mercury-inhibited proteinase K in the presence of the synthetic peptides GGGWGQPH and HGGGW. The octapeptide sequence is identical to that of a single octapeptide repeat (OPR) from the physiologically important OPR region. Here, we present the first direct evidence for the complex formation between a proteolytic enzyme and a segment of human prion molecule. The X-ray structures of the complexes at 1.4 and 1.8A resolution, respectively, revealed that in both cases the segment GGG is strongly bound as a real substrate at the substrate recognition site of the proteinase forming an antiparallel beta-strand between the two parallel strands of Asn99-Tyr104 and Ser132-Gly136. The complex is stabilized through an extended H-bonding network.  相似文献   
5.
Onchocerciasis or river blindness, caused by the filarial worm Onchocerca volvulus, is the world’s second leading infectious cause of blindness. In order to chronically infect the host, O. volvulus has evolved molecular strategies that influence and direct immune responses away from the modes most damaging to it. The O. volvulus GST1 (OvGST1) is a unique glutathione S-transferase (GST) in that it is a glycoprotein and possesses a signal peptide that is cleaved off in the process of maturation. The mature protein starts with a 25-amino-acid extension not present in other GSTs. In all life stages of the filarial worm, it is located directly at the parasite-host interface. Here, the OvGST1 functions as a highly specific glutathione-dependent prostaglandin D synthase (PGDS). The enzyme therefore has the potential to participate in the modulation of immune responses by contributing to the production of parasite-derived prostanoids and restraining the host’s effector responses, making it a tempting target for chemotherapy and vaccine development. Here, we report the crystal structure of the OvGST1 bound to its cofactor glutathione at 2.0 Å resolution. The structure reveals an overall structural homology to the haematopoietic PGDS from vertebrates but, surprisingly, also a large conformational change in the prostaglandin binding pocket. The observed differences reveal a different vicinity of the prostaglandin H2 binding pocket that demands another prostaglandin H2 binding mode to that proposed for the vertebrate PGDS. Finally, a putative substrate binding mode for prostaglandin H2 is postulated based on the observed structural insights.  相似文献   
6.
Glutathione S-transferase of Plasmodium falciparum (PfGST) displays a peculiar dimer to tetramer transition that causes full enzyme inactivation and loss of its ability to sequester parasitotoxic hemin. Furthermore, binding of hemin is modulated by a cooperative mechanism. Site-directed mutagenesis, steady-state kinetic experiments, and fluorescence anisotropy have been used to verify the possible involvement of loop 113–119 in the tetramerization process and in the cooperative phenomenon. This protein segment is one of the most prominent structural differences between PfGST and other GST isoenzymes. Our results demonstrate that truncation, increased rigidity, or even a simple point mutation of this loop causes a dramatic change in the tetramerization kinetics that becomes at least 100 times slower than in the native enzyme. All of the mutants tested have lost the positive cooperativity for hemin binding, suggesting that the integrity of this peculiar loop is essential for intersubunit communication. Interestingly, the tetramerization process of the native enzyme that occurs rapidly when GSH is removed is prevented not only by GSH but even by oxidized glutathione. This result suggests that protection by PfGST against hemin is independent of the redox status of the parasite cell. Because of the importance of this unique segment in the function/structure of PfGST, it could be a new target for the development of antimalarial drugs.Approximately two million deaths in the world per year are caused by Plasmodium falciparum, the parasite responsible for tropical malaria (1, 2). In the last years, increasing interest has been developing for the peculiar glutathione S-transferase (PfGST)3 expressed by this parasite. Expressed in almost all living organisms, GSTs represent a large superfamily of multifunctional detoxifying enzymes that are able to conjugate GSH to a lot of toxic electrophilic compounds, thus facilitating their excretion. Many other protection roles of GSTs have been described, including the enzymatic reduction of organic peroxides (35), the inactivation of the proapoptotic JNK through a GST·JNK complex (6), and the protection of the cell from excess nitric oxide (7). The mammalian cytosolic GSTs are dimeric proteins grouped into eight species-independent classes termed Alpha, Kappa, Mu, Omega, Pi, Sigma, Theta, and Zeta on the basis of sequence similarity, immunological reactivity, and substrate specificity (3, 811). PfGST is one of the most abundant proteins expressed by P. falciparum (from 1 to 10%, i.e. from 0.1 to 1 mm) (12), and different from what occurs in many organisms, it is the sole GST isoenzyme expressed by this parasite. Despite its structural similarity to the Mu class GST, this specific isoenzyme cannot be assigned to any known GST class (13). The interest in this enzyme is due to its particular protective role in the parasite. In fact, in addition to the usual GST activity that promotes the conjugation of GSH to electrophilic centers of toxic compounds, this protein efficiently binds hemin, and thus it could protect the parasite (that resides in the erythrocytes) from the parasitotoxic effect of this heme by-product (14). Specific compounds that selectively inhibit its catalytic activity or hemin binding could be promising candidates as antimalarial drugs. In this context, the discovery of structural or mechanistic properties of this enzyme that are not found in other GSTs may be important for designing selective inhibitors that are toxic to the parasite but harmless for the host cells. Two properties never observed in other members of the GST superfamily are of particular interest. The first property is that this enzyme, in the absence of GSH, is inactivated in a short time and loses its ability to bind hemin (15). Recent studies indicated that the inactivation process is related to a dimer to tetramer transition (13, 16, 17). The second property is the strong positive homotropic phenomenon that modulates the affinity of the two subunits for hemin (15). The x-ray crystal structure of PfGST, solved by two different groups (13, 18), provides insights into this effect. From a structural point of view, the most intriguing differences of PfGST when compared with other GSTs are a more solvent-exposed H-site and an atypic extra loop connecting helix α-4 and helix α-5 (residues 113–119; see also Fig. 1) that could be involved in the dimer-dimer interaction. Actually, in the absence of ligands, two biological dimers form a tetramer, and these homodimers are interlocked with each other by loop 113–119 of one homodimer, which occupies an H-site of the other homodimer (13, 18). Upon binding of S-hexylglutathione, loop 113–119 rearranges; residues Asn-114, Leu-115, and Phe-116 form an additional coil in helix α-4; and the side chains of Asn-111, Phe-116, and Tyr-211 flip into the H-site of the same dimer (17, 18). The changed course of residues 113–119 in the liganded enzyme prevents the interlocking of the dimers.Open in a separate windowFIGURE 1.A, structural changes of loop 113–119 occurring in the dimer (light blue model and yellow loop; Protein Data Bank code 2AAW) to tetramer (blue model and orange loop; Protein Data Bank code 1OKT) transition. Red spheres indicate the amino acids replaced in this study to obtain mutants A, B, and C. B, model of hemin·PfGST complex obtained by docking simulation using the crystal structure for Protein Data Bank code 1Q4J (15). Hemin is shown in red, loop 113–119 is in orange, and GSH is shown as yellow sticks.In this paper, by means of site-directed mutagenesis, fluorescence anisotropy, kinetic studies, and size exclusion chromatography, we check the influence of selected mutations of this atypic loop in the tetramerization process and the possible involvement of this protein segment in the cooperative phenomenon that characterizes hemin binding. In addition we describe that the tetramerization process is inhibited not only by GSH but even by GSSG. This finding suggests that hemin binding of PfGST is independent of the redox status of the cell. Finally, we demonstrate that the presence of GSH (or GSSG) in the active site is not essential for hemin binding, but this interaction only requires an active dimeric conformation.  相似文献   
7.
8.
The crystal structure of the ribosome-inactivating protein (RIP) mistletoe lectin I (ML-I) from Viscum album has been solved by molecular replacement techniques. The structure has been refined to a crystallographic R-factor of 24.5% using X-ray diffraction data to 2.8 A resolution. The heterodimeric 63-kDa protein consists of a toxic A subunit which exhibits RNA-glycosidase activity and a galactose-specific lectin B subunit. The overall protein fold is similar to that of ricin from Ricinus communis; however, unlike ricin, ML-I is already medically applied as a component of a commercially available misteltoe extract with immunostimulating potency and for the treatment of human cancer. The three-dimensional structure reported here revealed structural details of this pharmaceutically important protein. The comparison to the structure of ricin gives more insights into the functional mechanism of this protein, provides structural details for further protein engineering studies, and may lead to the development of more effective therapeutic RIPs.  相似文献   
9.
The parasite Plasmodium falciparum causes malaria tropica, the most prevailing parasitic disease worldwide, with 300-500 million infections and 1.5-2.7 million deaths/year. The emergence of strains resistant to drugs used for prophylaxis and treatment and no vaccine available makes the structural analysis of potential drug targets essential. For that reason, we analyzed the three-dimensional structure of the glutathione S-transferase from P. falciparum (Pf-GST1) in the apoform and in complex with its inhibitor S-hexyl-glutathione. The structures have been analyzed to 2.6 and 2.2 A, respectively. Pf-GST1 shares several structural features with the Mu-type GSTs and is therefore closely related to this class, even though alignments with its members display low sequence identities in the range of 20-33%. Upon S-hexyl-glutathione binding, the overall structure and the glutathione-binding site (G-site) remain almost unchanged with the exception of the flexible C terminus. The detailed comparison of the parasitic enzyme with the human host Mu-class enzyme reveals that, although the overall structure is homologue, the shape of the hydrophobic binding pocket (H-site) differs substantially. In the human enzyme, it is shielded from one side by the large Mu-loop, whereas in Pf-GST1 the Mu-loop is truncated and the space to recognize and bind voluminous substrates is extended. This structural feature can be exploited to support the design of specific and parasite-selective inhibitors.  相似文献   
10.
Structure-function relationships in a molluscan hemocyanin have been investigated by determining the crystal structure of the Rapana thomasiana (gastropod) hemocyanin functional unit RtH2e in deoxygenated form at 3.38 A resolution. This is the first X-ray structure of an unit from the wall of the molluscan hemocyanin cylinder. The crystal structure of RtH2e demonstrates molecular self-assembly of six identical molecules forming a regular hexameric cylinder. This suggests how the functional units are ordered in the wall of the native molluscan hemocyanins. The molecular arrangement is stabilized by specific protomer-to-protomer interactions, which are probably typical for the functional units building the wall of the cylinders. A molecular mechanism for cooperative dioxygen binding in molluscan hemocyanins is proposed on the basis of the molecular interactions between the protomers. In particular, the deoxygenated RtH2e structure reveals a tunnel leading from two opposite sides of the molecule to the active site. The tunnel represents a possible entrance pathway for dioxygen molecules. No such tunnels have been observed in the crystal structure of the oxy-Odg, a functional unit from the Octopus dofleini (cephalopod) hemocyanin in oxygenated form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号