首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
  2022年   2篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2013年   3篇
  2012年   8篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1983年   2篇
  1981年   1篇
排序方式: 共有45条查询结果,搜索用时 203 毫秒
1.
Three plasma membrane subfractions have been isolated and characterized from rat liver cells. The high affinity Ca2+-stimulated ATPase is highly enriched in the bile canalicular subfraction. Taking into account cross-contamination by the blood sinusoidal and lateral membranes it is suggested that the high-affinity Ca2+-ATPase is located exclusively in this fraction. The high-affinity Ca2+-ATPase is coupled to Ca2+ transport, is calmodulin-insensitive, sensitive to vanadate under appropriate experimental conditions and is strongly inhibited by La3+. In the presence of Ca2+ and ATP the ATPase forms a phosphorylated intermediate of molecular mass about 200 kDa.  相似文献   
2.
The cellular content of 170kD and 180kD topoisomerase II was studied as a function of the proliferation state and cell cycle position in NIH-3T3 cells. When the cells were synchronized by serum starvation and then stimulated to enter the cell cycle by addition of fresh growth medium, the amount of 170kD topoisomerase II present was undetectable until the cells reached late S phase, peaked in G2-M phase cells, and decreased as the cells completed mitosis. The amount of 180kD topoisomerase II was constant once the cells entered the cell cycle. When exponentially growing cells were induced to enter G0 by serum starvation, the amount of 170kD topoisomerase II decreased in parallel with the loss of cells from the S and G2-M phases of the cell cycle and was undetectable once all of the cells reached G0. In contrast, the 180kD enzyme was still present after all of the cells had entered G0. The tightness of association of the two enzymes with chromatin was measured by determining the concentration of salt required to extract them from isolated nuclei. The 180kD enzyme required a higher concentration of NaCl for extraction than did the 170kD enzyme. The different patterns of expression of the two forms of topoisomerase II suggest that they perform different functions in cells.  相似文献   
3.
We have shown that the circulating vaccine-derived polioviruses responsible for poliomyelitis outbreaks in Madagascar have recombinant genomes composed of sequences encoding capsid proteins derived from poliovaccine Sabin, mostly type 2 (PVS2), and sequences encoding nonstructural proteins derived from other human enteroviruses. Interestingly, almost all of these recombinant genomes encode a nonstructural 3A protein related to that of field coxsackievirus A17 (CV-A17) strains. Here, we investigated the repercussions of this exchange, by assessing the role of the 3A proteins of PVS2 and CV-A17 and their putative cellular partners in viral replication. We found that the Golgi protein acyl-coenzyme A binding domain-containing 3 (ACBD3), recently identified as an interactor for the 3A proteins of several picornaviruses, interacts with the 3A proteins of PVS2 and CV-A17 at viral RNA replication sites, in human neuroblastoma cells infected with either PVS2 or a PVS2 recombinant encoding a 3A protein from CV-A17 [PVS2-3A(CV-A17)]. The small interfering RNA-mediated downregulation of ACBD3 significantly increased the growth of both viruses, suggesting that ACBD3 slowed viral replication. This was confirmed with replicons. Furthermore, PVS2-3A(CV-A17) was more resistant to the replication-inhibiting effect of ACBD3 than the PVS2 strain, and the amino acid in position 12 of 3A was involved in modulating the sensitivity of viral replication to ACBD3. Overall, our results indicate that exchanges of nonstructural proteins can modify the relationships between enterovirus recombinants and cellular interactors and may thus be one of the factors favoring their emergence.  相似文献   
4.
5.
In spite of the common belief of Europe as reasonably homogeneous at genetic level, advances in high-throughput genotyping technology have resolved several gradients which define different geographical areas with good precision. When Northern and Southern European groups were considered separately, there were clear genetic distinctions. Intra-country genetic differences were also evident, especially in Finland and, to a lesser extent, within other European populations. Here, we present the first analysis using the 125,799 genome-wide Single Nucleotide Polymorphisms (SNPs) data of 1,014 Italians with wide geographical coverage. We showed by using Principal Component analysis and model-based individual ancestry analysis, that the current population of Sardinia can be clearly differentiated genetically from mainland Italy and Sicily, and that a certain degree of genetic differentiation is detectable within the current Italian peninsula population. Pair-wise FST statistics Northern and Southern Italy amounts approximately to 0.001 between, and around 0.002 between Northern Italy and Utah residents with Northern and Western European ancestry (CEU). The Italian population also revealed a fine genetic substructure underscoring by the genomic inflation (Sardinia vs. Northern Italy = 3.040 and Northern Italy vs. CEU = 1.427), warning against confounding effects of hidden relatedness and population substructure in association studies.  相似文献   
6.
Few large studies on Northern European or US populations reported on mortality of severely obese individuals (BMI > or = 40 kg/m(2)). We studied a historical cohort in Italy to compare its mortality with previous findings, to investigate its relationship with BMI in the >40 range, and to provide evidence useful for clinical decision-making on treatment. The cohort comprised 4,837 persons with a BMI > or =40 kg/m(2) and aged > or =18 at first consultation, referred to six centers for obesity treatment between 1975 and 1996. After exclusion of persons with missing personal identification data or those untraceable, 4,498 (972 men, 3,526 women) remained for analyses. We calculated standardized mortality ratios (SMRs) and carried out Cox proportional hazards modeling. General mortality (484 deaths: 153 men, 331 women) was in excess, with SMRs (95% confidence intervals) of 2.78 (2.36-3.26) for men and 2.10 (1.88-2.34) for women. Excess mortality (i) was observed in all BMI categories, except among women weighing 40-42.4 kg/m(2); (ii) increased with increasing BMI; (iii) increased less among persons recruited in recent calendar periods; (iv) was inversely related to age attained at follow-up; and (v) was due to cardiovascular and respiratory diseases and violent deaths but not malignant neoplasms. Excess mortality was similar to that observed in Northern European and US cohorts. Its steady increase with BMI levels > or =40 suggests that benefits proportional to weight reduction are expected and that even limited control may be beneficial. The smaller excess among persons recruited most recently might reflect better treatment.  相似文献   
7.
Incubation of isolated rat hepatocytes with cytotoxic concentrations of menadione resulted in inhibition of plasma membrane Ca2+-ATPase activity. This could be restored by subsequent treatment with either dithiothreitol or reduced glutathione, suggesting that the inhibition by menadione was due to oxidation of sulfhydryl groups critical for Ca2+-ATPase activity.  相似文献   
8.
Quinones may induce toxicity by a number of mechanisms, including alkylation and oxidative stress following redox cycling. The metabolism of quinones by isolated rat hepatocytes is associated with cytoskeletal alterations, plasma membrane blebbing, and subsequent cytotoxicity. The different mechanisms underlying the effects of alkylating (p-benzoquinone), redox cycling (2,3-dimethoxy-1,4-naphthoquinone), and mixed redox cycling/alkylating (2-methyl-1,4-naphthoquinone) quinones on hepatocyte cytoskeleton have been investigated in detail in this study. Analysis of the cytoskeletal fraction extracted from quinone-treated cells revealed a concentration-dependent increase in the amount of cytoskeletal protein and a concomitant loss of protein thiols, irrespective of the quinone employed. In the case of redox cycling quinones, these alterations were associated with an oxidation-dependent actin crosslinking (sensitive to the thiol reductant dithiothreitol). In contrast, with alkylating quinones an oxidation-independent cytoskeletal protein crosslinking (insensitive to thiol reductants) was observed. In addition to these changes, a dose-dependent increase in the relative abundance of F-actin was detected as a consequence of the metabolism of oxidizing quinones in hepatocytes. Addition of dithiothreitol solubilized a considerable amount of polypeptides from the cytoskeletal fraction isolated from hepatocytes exposed to redox cycling but not alkylating quinones. Our findings indicate that the hepatocyte cytoskeleton is an important target for the toxic effects of different quinones. However, the mechanisms underlying cytoskeletal damage differ depending on whether the quinone acts primarily by oxidative stress or alkylation.  相似文献   
9.
Incubation of isolated rat hepatocytes with menadione (2-methyl-1,4-naphthoquinone) or the thiol oxidant, diamide (azodicarboxylic acid bis(dimethylamide)), resulted in the appearance of numerous plasma membrane protrusions (blebs) preceding cell death. Analysis of the Triton X-100-insoluble fraction (cytoskeleton) extracted from treated cells revealed a dose- and time-dependent increase in the amount of cytoskeletal protein and a concomitant loss of protein thiols. These changes were associated with the disappearance of actin and formation of large-molecular-weight aggregates, when the cytoskeletal proteins were analyzed by polyacrylamide gel electrophoresis under nonreducing conditions. However, if the cytoskeletal proteins were treated with the thiol reductants, dithiothreitol or beta-mercaptoethanol, no changes in the relative abundance of actin or formation of large-molecular-weight aggregates were detected in the cytoskeletal preparations from treated cells. Moreover, addition of dithiothreitol to menadione- or diamide-treated hepatocytes protected the cells from both the appearance of surface blebs and the occurrence of alterations in cytoskeletal protein composition. Our findings show that oxidative stress induced by the metabolism of menadione in isolated hepatocytes causes cytoskeletal abnormalities, of which protein thiol oxidation seems to be intimately related to the appearance of surface blebs.  相似文献   
10.
The p170 and p180 forms of topoisomerase II have been compared. The concentration dependence of ATP for catalytic activity of the two forms of the enzyme was identical, and each was equally sensitive to novobiocin. Orthovanadate was found to be a potent inhibitor of catalytic activity of both p170 and p180, with an IC50 value of about 2 microM for each. Under standard reaction conditions, relaxation of supercoiled pBR322 by p180 was highly processive, while p170 performed the same reaction in a distributive manner. The optimal concentration of KCl for catalytic activity of p180 was 20-30 mM higher than that for p170. Comparison of their thermal stability showed that p180 was inactivated at twice the rate of p170. Teniposide and merbarone selectively inhibited catalytic activity of p170, requiring concentrations 3-fold and 8-fold lower, respectively, than those required for equivalent inhibition of p180. Similar selectivity for p170 was seen for teniposide-stimulated DNA cleavage or its inhibition by merbarone. Analysis of sites of DNA cleavage indicated a subset of sites that were either preferred or unique for each of the enzymes. A synthetic oligonucleotide representative of p170 sites selectively inhibited the p170 enzyme. Immunoblotting of p170 and p180 from U937 cells at different stages of proliferation showed that p170 levels declined as the cells reached the plateau phase of growth, while p180 levels were low during rapid proliferation and increased as the growth rate slowed. The data indicate that the p170 and p180 forms of topoisomerase II can be distinguished biochemically, pharmacologically, and by differential cellular regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号