首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   4篇
  2023年   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2014年   6篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   4篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
  1965年   4篇
  1964年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
1.
2.
3.
The purpose of this study was to evaluate the effect of prolonged immobilization on bone, in order to investigate how skeletal turnover adapts to bed rest. We examined indices of bone formation and bone resorption in the serum and urine of fifty-four patients (26 males and 28 females) immobilized after an episode of paralytic stroke. The length of immobilization ranged from 30 to 180 days. A significant, time-dependent increase in markers of resorption - urinary pyridinoline (Pyr) and deoxypyridinoline (D-Pyr), serum Type I collagen cross-linked C-telopeptide (ICTP) - was observed in immobilized patients, as compared to free-living healthy subjects. The positive correlation between resorption markers increase and the length of immobilization suggests that the rate of bone resorption did not decrease with time. On the other hand, the levels of markers of bone formation - bone-specific alkaline phosphatase (B-ALP), and the carboxyl-terminal propeptide of Type I procollagen (PICP) - remained within the normal range in all patients, regardless the length of immobilization. Our results would indicate an uncoupling between bone formation and bone resorption during bed rest, and suggest that the bone collagen break-down was not a self-limiting process in immobilized patients, and that a new equilibrium or "steady state" in response to the reduced load was not reached in the skeleton.  相似文献   
4.
Recent studies suggest that NO and its reactive derivative peroxynitrite are implicated in the pathogenesis of multiple sclerosis (MS). Patients dying with MS demonstrate increased astrocytic inducible nitric oxide synthase activity, as well as increased levels of iNOS mRNA. Peroxynitrite is a strong oxidant capable of damaging target tissues, particularly the brain, which is known to be endowed with poor antioxidant buffering capacity. Inducible nitric oxide synthase is upregulated in the central nervous system (CNS) of animals with experimental allergic encephalomyelitis (EAE) and in patients with MS. We have recently demonstrated in patients with active MS a significant increase of NOS activity associated with increased nitration of proteins in the cerebrospinal fluid (CSF). Acetylcarnitine is proposed as a therapeutic agent for several neurodegenerative disorders. Accordingly, in the present study, MS patients were treated for 6 months with acetylcarnitine and compared with untreated MS subjects or with patients noninflammatory neurological conditions, taken as controls. Western blot analysis showed in MS patients increased nitrosative stress associated with a significant decrease of reduced glutathione (GSH). Increased levels of oxidized glutathione (GSSG) and nitrosothiols were also observed. Interestingly, treatment of MS patients with acetylcarnitine resulted in decreased CSF levels of NO reactive metabolites and protein nitration, as well as increased content of GSH and GSH/GSSG ratio. Our data sustain the hypothesis that nitrosative stress is a major consequence of NO produced in MS-affected CNS and implicate a possible important role for acetylcarnitine in protecting brain against nitrosative stress, which may underlie the pathogenesis of MS.  相似文献   
5.
The cardiac conduction system (CCS) is the component of the heart that initiates and maintains a rhythmic heartbeat. As the embryonic heart forms, the CCS must continue to develop and mature in a coordinated manner to ensure that proper pace making potential and distribution of action potential is maintained at all stages. This requires not only the formation of distinct and disparate components of the CCS, but the integration of these components into a functioning whole as the heart matures. Though research in this area of development may have lagged behind other areas of heart development, in recent years there has been much progress in understanding the ontogeny of the CCS and the developmental cues that drive its formation. This is largely due to studies on the avian heart as well as the use of molecular biology approaches. This review gives a perspective on advances in understanding the development of the vertebrate CCS, and reports new data illuminating the mechanism of conduction cell determination and maintenance in the mammalian heart. As much of our knowledge about the development of the CCS has been derived from the chick embryo, one important area facing the field is the relationship and similarities between the structure and development of avian and mammalian conduction systems. Specifically, the morphology of the distal elements of the mammalian CCS and the manner in which its components are recruited from working cardiomyocytes are areas of research that will, hopefully, receive more attention in the near future. A more general and outstanding question is how the disparate components of all vertebrate conduction systems integrate into a functional entity during embryogenesis. There is mounting evidence linking the patterning and formation of the CCS to instructive cues derived from the cardiac vasculature and, more specifically, to hemodynamic-responsive factors produced by cardiac endothelia. This highlights the need for a greater understanding of the biophysical forces acting on, and created by, the cardiovascular system during embryonic development. A better understanding of these processes will be necessary if therapeutics are to be developed that allow the regeneration of damaged cardiac tissues or the construction of biologically engineered heart tissues.  相似文献   
6.
Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.  相似文献   
7.
A subgroup of neutral lipid storage disease has been recently associated with myopathy (NLSDM) and attributed to mutations in the gene (PNPLA2) encoding an adipose triglyceride lipase involved in the degradation of intracellular triglycerides. Five NLSDM patients have been described thus far and we reported three additional patients. A 44-year old Iranian woman and two Italian brothers, aged 40 and 35, presented with exercise intolerance and proximal limb weakness, elevated CK levels, and Jordan’s anomaly. Muscle biopsies showed marked neutral lipid accumulation in all patients. The 10 exons and the intron-exon junctions of the PNPLA2 gene were sequenced. Two novel homozygous mutations in exon 5 of PNPLA2 gene were found (c.695delT and c.542delAC). Both mutations resulted in frameshifts leading to premature stop codons (p.L255X and p.I212X, respectively). These mutations predict a truncated PNPLA2 protein lacking the C-terminal hydrophobic domain. These findings indicate that NLSDM is rare, but genetically heterogeneous.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号