首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2013年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2001年   1篇
  1991年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
In order to elucidate the role of proteins CLV1, CLV2, CLV3, and WUS in the mechanism underlying the maintenance of compartmental structure (spatial arrangement of the zones of biosynthesis of marker proteins) of the shoot apical meristem, a model of such mechanism was developed. Computational experiments led to biologically plausible solutions only when synthesis of substance W in a space between the organizing center and meristem apex was limited by the mechanism based on interaction of CLV3 with membrane receptor CLV1/CKV2 and lower boundary of the zone of W synthesis was determined by isoline of the corresponding threshold level of substance Y concentration. The model of the "reaction-diffusion" type formalizing the role proteins CLV1, CLV2, CLV3, and WUS can describe the basis of the mechanism underlying regulation of the compartmental structure of the shoot apical meristem and positioning of the organizing center in a certain site of the cell ensemble of such meristem.  相似文献   
3.

Two models of the mechanism maintaining a zonal structure in the shoot apical meristem (SAM) were built based on the analysis of experimental data on the interactions between CLV1, CLV2, CLV3, and WUS genes and the concepts of their role in this mechanism. The first model, a simple one-dimensional model with two morphogens, which is a variant of Wolpert’s French flag model [1], describes the regulation of zone distribution along the SAM vertical axis. Despite a number of simplifications, this model has stationary solutions with biologically meaningful interpretation. The simplifying assumptions were successively abandoned in constructing a two-dimensional model of the mechanism underlying the regulation of SAM structure. This model provides a better understanding of the distributed system that regulates the SAM structure, and allows more detailed formalization of the modern concepts and experimental data concerning this mechanism.

  相似文献   
4.
In order to elucidate the role of proteins CLV1, CLV2, CLV3, and WUS in the mechanism underlying the maintenance of compartmental structure (spatial arrangement of the zones of biosynthesis of marker proteins) of the shoot apical meristem, a model of such mechanism was developed. Computational experiments led to biologically plausible solutions only when synthesis of substance W in a space between the organizing center and meristem apex was limited by the mechanism based on interaction of CLV3 with membrane receptor CLV1/CLV2 and lower boundary of the zone of W synthesis was determined by isoline of the corresponding threshold level of substance Y concentration. The model of the “reaction-diffusion” type formalizing the role proteins CLV1/CLV2, CLV3, and WUS can describe the basis of the mechanism underlying regulation of the compartmental structure of the shoot apical meristem and positioning of the organizing center in a certain site of the cell ensemble of such meristem.  相似文献   
5.
Two models of the mechanism maintaining a zonal structure in the shoot apical meristem (SAM) were built based on the analysis of experimental data on the interactions between CLV1, CLV2, CLV3, and WUS genes and the concepts of their role in this mechanism. The first model, a simple one-dimensional model with two morphogens, which is a variant of Wolpert’s French flag model [1], describes the regulation of zone distribution along the SAM vertical axis. Despite a number of simplifications, this model has stationary solutions with biologically meaningful interpretation. The simplifying assumptions were successively abandoned in constructing a two-dimensional model of the mechanism underlying the regulation of SAM structure. This model provides a better understanding of the distributed system that regulates the SAM structure, and allows more detailed formalization of the modern concepts and experimental data concerning this mechanism.  相似文献   
6.
Efficiency of tocopherol, its analog with a shortened side chain as well as their quinons for tuberculosis was determined. All the studied compounds inhibited peroxide-formation processes in the liver homogenate and mitochondria. The vitamin E amount in the blood is considerably decreased in case of tuberculosis. The studied analogs increased its content and possessed a weak tuberculostatic but expressed antiedemic and antiinflammatory action. Administration of vitamin E in combination with isoniazid to sick animals had a favourable effect on the processes of tissue respiration and oxidative phosphorylation. If taking a sum of characters, tocopherol acetate with a shortened side chain is the most efficient of all the analogs under study for the tuberculosis therapy.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号