首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2007年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
It is well established that intraspecific aggregation has the potential to promote coexistence in communities of species competing for patchy ephemeral resources. We developed a simulation model to explore the influence of aggregation on coexistence in such communities when an important assumption of previous studies – that interspecific interactions have only negative effects on the species involved – is relaxed. The model describes a community of competing insect larvae in which an interaction that is equivalent to intraguild predation (IGP) can occur, and is unusual in that it considers species exploiting very small resource patches (carrying capacity=1). Model simulations show that, in the absence of any intraspecific aggregation, variation between species in the way that resource heterogeneity affects survival increases the likelihood of species coexistence. Simulations also show that intraspecific aggregation of the dominant competitor's eggs across resource patches can promote coexistence by reducing the importance of interspecific competition relative to that of intraspecific competition. Crucially, however, this effect is altered if one competitor indulges in IGP. In general, coexistence is only possible when the species that is capable of IGP is less effective at exploiting the shared resource than its competitor. Because it reduces the relative importance of interspecific interactions, intraspecific aggregation of the eggs of a species that is the victim of IGP actually reduces the likelihood of coexistence in parts of parameter space in which the persistence of the other species is dependent on its ability to exploit its competitor. Since resource heterogeneity, intraspecific aggregation and IGP are all common phenomena, these findings shed light on mechanisms that are likely to influence diversity in communities exploiting patchy resources.  相似文献   
2.
Parasitism can influence many aspects of the host's behaviour and physiology, which in turn can have a profound impact on their population and evolutionary ecology. In many host–parasite interactions there is often a time lag between infection and the death of the host, yet little is known, experimentally or theoretically, about the effects that intra-class competition between parasitised and unparasitised hosts have on the host–parasite population dynamics.
In this article we address this gap in our understanding using a stage-structured mathematical model for a host–parasitoid interaction, which has been parameterised for the Plodia–Venturia experimental system.
In the case where parasitised larvae do not compete and do not cannibalise unparasitised larvae, our model predicts a wide range of host–parasitoid dynamics, ranging from host–parasitoid generation cycles, to host generation cycles with parasitoid half-generation cycles, to host–parasitoid equilibria, to host generation cycles with parasitoid extinction.
However, when parasitised larvae can compete with their unparasitised larvae counterparts, the host–parasitoid population dynamics can dramatically change. In particular, we show that high levels of competition exerted by unparasitised larvae upon parasitised larvae is more likely to lead to parasitoid extinction.
In addition, we demonstrate that unparasitised host larvae that are sufficiently susceptible to intra-class competition, or parasitised host larvae that are sufficiently strong competitors, can have a stabilising effect on the host–parasitoid population dynamics.
The implications of these theoretical results are discussed in light of our understanding of host–parasitoid interactions and host–parasite systems in general.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号