首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.

Background

Burkholderia pseudomallei is the causative agent of melioidosis, a frequently occurring disease in northeastern Thailand, where soil and water high in salt content are common. Using microarray analysis, we previously showed that B. pseudomallei up-regulated a short-chain dehydrogenase/oxidoreductase (SDO) under salt stress. However, the importance of SDO in B. pseudomallei infection is unknown. This study aimed to explore the function of B. pseudomallei SDO, and to investigate its role in interactions between B. pseudomallei and host cells.

Results

Bioinformatics analysis of B. pseudomallei SDO structure, based on homology modeling, revealed a NAD+ cofactor domain and a catalytic triad containing Ser149, Tyr162, and Lys166. This is similar to Bacillus megaterium glucose 1-dehydrogenase. To investigate the role of this protein, we constructed a B. pseudomallei SDO defective mutant, measured glucose dehydrogenase (GDH) activity, and tested the interactions with host cells. The B. pseudomallei K96243 wild type exhibited potent GDH activity under condition containing 300 mM NaCl, while the mutant showed activity levels 15 times lower. Both invasion into the A549 cell line and early intracellular survival within the J774A.1 macrophage cell were impaired in the mutant. Complementation of SDO was able to restore the mutant ability to produce GDH activity, invade epithelial cells, and survive in macrophages.

Conclusions

Our data suggest that induced SDO activity during salt stress may facilitate B. pseudomallei invasion and affect initiation of successful intracellular infection. Identifying the role of B. pseudomallei SDO provides a better understanding of the association between bacterial adaptation and pathogenesis in melioidosis.  相似文献   
2.
MicroRNA-21 (miR-21) is recognized as an oncomir and shows up-regulation in many types of human malignancy. The aim of this study was to investigate the association of miR-21 expression associated with HPV infection in normal and abnormal cervical tissues. Cervical tissue samples with different cytological or histopathological grades were investigated for HPV by PCR and for miR-21 and programmed cell death, protein 4 (PDCD4) expression using quantitative real-time PCR (qRT-PCR). Laser capture microdissection (LCM) of stromal and epithelial tissues and in situ hybridization (ISH) using locked nucleic acid (LNA) probes were performed on a subset of fixed specimens. Cell line experiments were conducted on fibroblasts stimulated in culture media from HeLa cells, which were then assessed for miR-21, PDCD4, IL-6 and α-SMA expression by qRT-PCR. Twenty normal cervical cell, 12 cervicitis, 14 cervical intraepithelial neoplastic I (CIN I), 22 CIN II-III and 43 cervical squamous cell carcinoma (SCC) specimens were investigated. miR-21 levels were significantly lower in normal than in abnormal tissues. The expression of miR-21 in HPV negative normal cytology was significantly lower than in HPV positive samples in abnormal tissue and SCC. The miR-21 expression was significantly higher in HPV negative cervicitis than HPV negative normal cells. LCM and ISH data showed that miR-21 is primarily expressed in the tumor-associated stromal cell microenvironment. Fibroblasts treated with HeLa cell culture media showed up-regulated expression of miR-21, which correlated with increased expression of α-SMA and IL-6 and with down-regulation of PDCD4. These results demonstrate that miR-21 is associated with HPV infection and involved in cervical lesions as well as cervicitis and its up-regulation in tumor-stroma might be involved in the inflammation process and cervical cancer progression.  相似文献   
3.
Background and aim: Cholangiocarcinoma (CCA) is the most common cancer in Northeast Thailand. Endemicity of Opisthorchis viverrini (OV) – a known carcinogen – is responsible, but although infection is very common, the lifetime risk of CCA is only 5%. Other co-factors must exist, including aspects of lifestyle or diet along with variations in genetic susceptibility to them. Change in methylenetetrahydrofolate reductase (MTHFR) activity may influence both DNA methylation and synthesis. This study investigates risk factors for CCA with a focus on lifestyle, diet and MTHFR polymorphisms. Methods: Nested case–control study within cohort study was conducted. 219 subjects with primary CCA were each matched with two non-cancer controls from the same cohort on sex, age at recruitment and presence/absence of OV eggs in stool. Lifestyle and dietary data were obtained at recruitment. MTHFR polymorphisms were analyzed using PCR with high resolution melting analysis. The associations were assessed using conditional logistic regression. Results: Consumption of alcohol, raw freshwater fish and beef sausage increased the risk of CCA, while fruit and/or vegetables consumption reduced risk. There were interactions between MTHFR and preserved freshwater fish and beef. These dietary items are either a source of OV or of pre-formed nitrosamine, folate and antioxidants that are of possible relevance in OV carcinogenesis. Conclusions: Primary prevention of CCA in high-risk population is based upon efforts to reduce OV infection. Reduced consumption of alcohol and preserved meats, and increased consumption of dietary folate, actions with a wider preventive potential, may also help in the reduction of CCA burden.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号