首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
排序方式: 共有6条查询结果,搜索用时 734 毫秒
1
1.
2.
Prothymosin alpha is a small, acidic, essential nuclear protein that plays a poorly defined role in the proliferation and survival of mammalian cells. Recently, Vega et al. proposed that exogenous prothymosin alpha can specifically increase the phosphorylation of eukaryotic elongation factor 2 (eEF-2) in extracts of NIH3T3 cells (Vega, F. V., Vidal, A., Hellman, U., Wernstedt, C., and Domínguez, F. (1998) J. Biol. Chem. 273, 10147-10152). Using similar lysates prepared by four methods (detergent lysis, Dounce homogenization, digitonin permeabilization, and sonication) and three preparations of prothymosin alpha, one of which was purified by gentle means (the native protein, and a histidine-tagged recombinant prothymosin alpha expressed either in bacteria or in COS cells), we failed to find a response. A reconstituted system composed of eEF-2, recombinant eEF-2 kinase, calmodulin, and calcium was also unaffected by prothymosin alpha. However, unlike our optimized buffer, Vega's system included a phosphatase inhibitor, 50 mM fluoride, which when evaluated in our laboratories severely reduced phosphorylation of all species. Under these conditions, any procedure that decreases the effective fluoride concentration will relieve the inhibition and appear to activate. Our data do not support a direct relationship between the function of prothymosin alpha and the phosphorylation of eEF-2.  相似文献   
3.
Pavur KS  Petrov AN  Ryazanov AG 《Biochemistry》2000,39(40):12216-12224
A new class of eukaryotic protein kinases that are not homologous to members of the serine/threonine/tyrosine protein kinase superfamily was recently identified [Futey, L. M., et al. (1995) J. Biol. Chem. 270, 523-529; Ryazanov, A. G., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 4884-4889]. This class includes eukaryotic elongation factor-2 kinase, Dictyostelium myosin heavy chain kinases A, B, and C, and several mammalian putative protein kinases that are not yet fully characterized [Ryazanov, A. G., et al. (1999) Curr. Biol. 9, R43-R45]. eEF-2 kinase is a ubiquitous protein kinase that phosphorylates and inactivates eukaryotic translational elongation factor-2, and thus can modulate the rate of polypeptide chain elongation during translation. eEF-2 was the only known substrate for eEF-2 kinase. We demonstrate here that eEF-2 kinase can efficiently phosphorylate a 16-amino acid peptide, MH-1, corresponding to the myosin heavy chain kinase A phosphorylation site in Dictyostelium myosin heavy chains. This enabled us to develop a rapid assay for eEF-2 kinase activity. To localize the functional domains of eEF-2 kinase, we expressed human eEF-2 kinase in Escherichia coli as a GST-tagged fusion protein, and then performed systematic in vitro deletion mutagenesis. We analyzed eEF-2 kinase deletion mutants for the ability to autophosphorylate, and to phosphorylate eEF-2 as well as a peptide substrate, MH-1. Mutants with deletions between amino acids 51 and 335 were unable to autophosphorylate, and were also unable to phosphorylate eEF-2 and MH-1. Mutants with deletions between amino acids 521 and 725 were unable to phosphorylate eEF-2, but were still able to autophosphorylate and to phosphorylate MH-1. The kinases with deletions between amino acids 2 and 50 and 336 and 520 were able to catalyze all three reactions. In addition, the C-terminal domain expressed alone (amino acids 336-725) binds eEF-2 in a coprecipitation assay. These results suggest that eEF-2 kinase consists of two domains connected by a linker region. The amino-terminal domain contains the catalytic domain, while the carboxyl-terminal domain contains the eEF-2 targeting domain. The calmodulin-binding region is located between amino acids 51 and 96. The amino acid sequence of the carboxyl-terminal domain of eEF-2 kinase displays similarity to several proteins, all of which contain repeats of a 36-amino acid motif that we named "motif 36".  相似文献   
4.
Ryazanova  L. V.  Pavur  K. S.  Petrov  A. N.  Dorovkov  M. V.  Ryazanov  A. G. 《Molecular Biology》2001,35(2):271-283
Recently we identified a new class of protein kinases with a novel type of catalytic domain structurally and evolutionarily unrelated to the conventional eukaryotic protein kinases. This new class, which we named alpha-kinases, is represented by eukaryotic elongation factor-2 kinase and the Dictyosteliummyosin heavy chain kinases. Here we cloned, sequenced, and analyzed the tissue distribution of five new putative mammalian -kinases: melanoma -kinase, kidney -kinase, heart -kinase, skeletal muscle -kinase, and lymphocyte -kinase. All five are large proteins of more than 1000 amino acids with an -kinase catalytic domain located in the carboxyterminal part. We expressed the catalytic domain of melanoma -kinase in Escherichia coli, and found that it autophosphorylates at threonine residues, demonstrating that it is a genuine protein kinase. Unexpectedly, we found that long aminoterminal portions of melanoma and kidney -kinases represent new members of the TRP ion channel family, which are thought to mediate the capacitative Ca2+entry in nonexcitable mammalian cells. This suggests that melanoma and kidney -kinases, which represent a novel type of signaling molecule, are involved in the regulation of Ca2+influx in mammalian cells.  相似文献   
5.
Regulation of elongation factor-2 kinase by pH   总被引:6,自引:0,他引:6  
Dorovkov MV  Pavur KS  Petrov AN  Ryazanov AG 《Biochemistry》2002,41(45):13444-13450
Elongation factor-2 kinase (eEF-2K) is a Ca(2+)/calmodulin-dependent protein kinase that phosphorylates and inactivates eEF-2 and that can regulate the rate of protein synthesis at the elongation stage. Here we report that a slight decrease in pH, within the range observed in vivo, leads to a dramatic activation of eEF-2K. The activity of eEF-2K in mouse liver extracts, as well as the activity of purified recombinant human eEF-2K, is low at pH 7.2-7.4 and is increased by severalfold when the pH drops to 6.6-6.8. eEF-2K requires calmodulin for activity at neutral as well as acidic pH. Kinetic studies demonstrate that the pH does not affect the K(M) for ATP or eEF-2 and activation of eEF-2K at acidic pH is due to an increase in V(max). To analyze the potential role of eEF-2K in regulating protein synthesis by pH, we constructed a mouse fibroblast cell line that expresses eEF-2K in a tetracycline-regulated manner. Overexpression of eEF-2K led to a decreased rate of protein synthesis at acidic pH, but not at neutral pH. Our results suggest that pH-dependent activation of eEF-2K may play a role in the global inhibition of protein synthesis during tissue acidosis, which accompanies such processes as hypoxia and ischemia.  相似文献   
6.
Recently we identified a new class of protein kinases with a novel type of catalytic domain structurally and evolutionarily unrelated to the conventional eukaryotic protein kinases. This new class, which we named alpha-kinases, is represented by eukaryotic elongation factor-2 kinase and the Dictyostelium myosin heavy chain kinases. Here we cloned, sequenced and analyzed the tissue distribution of five new putative mammalian alpha-kinases: melanoma alpha-kinase, kidney alpha-kinase, heart alpha-kinase, skeletal muscle alpha-kinase, and lymphocyte alpha-kinase. All five are large proteins of more than 1000 amino acids with an alpha-kinase catalytic domain located at the very carboxyl-terminus. We expressed the catalytic domain of melanoma alpha-kinase in Escherichia coli, and found that it autophosphorylates on threonine residues, demonstrating that it is a genuine protein kinase. Unexpectedly, we found that the long amino-terminal portions of melanoma and kidney alpha-kinases represent new members of the transient receptor potential (TRP) ion channel family, which are implicated in the mediation of capacitative Ca2+ entry in nonexcitable mammalian cells. This suggests that melanoma and kidney alpha-kinases, which represent a novel type of signaling molecule, are involved in the regulation of Ca2+ influx in mammalian cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号