首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   12篇
  86篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   8篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   6篇
  2002年   4篇
  2000年   2篇
  1994年   1篇
排序方式: 共有86条查询结果,搜索用时 0 毫秒
1.
2.
Many prey species suffer from different predators in the course of their ontogeny. Hence, the alarm signal a small prey individual sends can have a different meaning than the signal a large prey individual sends, both for small and for large receivers. Larvae of Western Flower Thrips face predators that attack only small larvae, or predators that attack small larvae and large larvae. Furthermore, thrips larvae release a two‐component alarm pheromone, which varies in composition with larval age. Here, we study whether their response to alarm pheromone varies with composition of the pheromone. First, we confirmed that large and small larvae respond when nearby larvae of both sizes were prodded with a brush to induce alarm pheromone excretion. Subsequently, we tested whether thrips larvae of a given size respond differentially to alarm pheromone excreted by a small or large companion larva. We analyzed two types of behavior used in direct defense against a predator and one type of escape response. Only small (not large) larvae attempted to escape more frequently in response to excretions from a large larva. This difference in response could have been due to the alarm pheromone or to the companion larva in the vicinity. We subsequently tested for, but did not find, an effect of size of the companion larva on the behavior of the test larva when exposed to synthetic pheromone mimicking that of a large larva. Finally, we tested how pheromone composition affects antipredator behavior by exposing thrips larvae to synthetic pheromones differing in amount and ratio of the two components. Only for small larvae, we found significant changes in escape behavior with pheromone amount, and a trend with the ratio. Overall, we conclude that small thrips larvae respond differentially to alarm pheromones excreted by small and large larvae and that this differential response is due to differences in pheromone quantity and possibly also quality. Our results suggest that responses to alarm signals can vary with the chemical composition of those alarm signals.  相似文献   
3.
4.
The division of labor between template and catalyst is a fundamental property of all living systems: DNA stores genetic information whereas proteins function as catalysts. The RNA world hypothesis, however, posits that, at the earlier stages of evolution, RNA acted as both template and catalyst. Why would such division of labor evolve in the RNA world? We investigated the evolution of DNA-like molecules, i.e. molecules that can function only as template, in minimal computational models of RNA replicator systems. In the models, RNA can function as both template-directed polymerase and template, whereas DNA can function only as template. Two classes of models were explored. In the surface models, replicators are attached to surfaces with finite diffusion. In the compartment models, replicators are compartmentalized by vesicle-like boundaries. Both models displayed the evolution of DNA and the ensuing division of labor between templates and catalysts. In the surface model, DNA provides the advantage of greater resistance against parasitic templates. However, this advantage is at least partially offset by the disadvantage of slower multiplication due to the increased complexity of the replication cycle. In the compartment model, DNA can significantly delay the intra-compartment evolution of RNA towards catalytic deterioration. These results are explained in terms of the trade-off between template and catalyst that is inherent in RNA-only replication cycles: DNA releases RNA from this trade-off by making it unnecessary for RNA to serve as template and so rendering the system more resistant against evolving parasitism. Our analysis of these simple models suggests that the lack of catalytic activity in DNA by itself can generate a sufficient selective advantage for RNA replicator systems to produce DNA. Given the widespread notion that DNA evolved owing to its superior chemical properties as a template, this study offers a novel insight into the evolutionary origin of DNA.  相似文献   
5.
A major goal of evolutionary developmental biology (evo-devo) is to understand how multicellular body plans of increasing complexity have evolved, and how the corresponding developmental programs are genetically encoded. It has been repeatedly argued that key to the evolution of increased body plan complexity is the modularity of the underlying developmental gene regulatory networks (GRNs). This modularity is considered essential for network robustness and evolvability. In our opinion, these ideas, appealing as they may sound, have not been sufficiently tested. Here we use computer simulations to study the evolution of GRNs' underlying body plan patterning. We select for body plan segmentation and differentiation, as these are considered to be major innovations in metazoan evolution. To allow modular networks to evolve, we independently select for segmentation and differentiation. We study both the occurrence and relation of robustness, evolvability and modularity of evolved networks. Interestingly, we observed two distinct evolutionary strategies to evolve a segmented, differentiated body plan. In the first strategy, first segments and then differentiation domains evolve (SF strategy). In the second scenario segments and domains evolve simultaneously (SS strategy). We demonstrate that under indirect selection for robustness the SF strategy becomes dominant. In addition, as a byproduct of this larger robustness, the SF strategy is also more evolvable. Finally, using a combined functional and architectural approach, we determine network modularity. We find that while SS networks generate segments and domains in an integrated manner, SF networks use largely independent modules to produce segments and domains. Surprisingly, we find that widely used, purely architectural methods for determining network modularity completely fail to establish this higher modularity of SF networks. Finally, we observe that, as a free side effect of evolving segmentation and differentiation in combination, we obtained in-silico developmental mechanisms resembling mechanisms used in vertebrate development.  相似文献   
6.
Patellofemoral pain (PFP) is a common injury and increased patellofemoral joint compression forces (PFJCF) may aggravate symptoms. Backward running (BR) has been suggested for exercise with reduced PFJCF. The aims of this study were to (1) investigate if BR had reduced peak PFJCF compared to forward running (FR) at the same speed, and (2) if PFJCF was reduced in BR, to investigate which biomechanical parameters explained this. It was hypothesized that (1) PFJCF would be lower in BR, and (2) that this would coincide with a reduced peak knee moment caused by altered ground reaction forces (GRFs). Twenty healthy subjects ran in forward and backward directions at consistent speed. Kinematic and ground reaction force data were collected; inverse dynamic and PFJCF analyses were performed. PFJCF were higher in FR than BR (4.5±1.5; 3.4±1.4BW; p<0.01). The majority of this difference (93.1%) was predicted by increased knee moments in FR compared to BR (157±54; 124±51 Nm; p<0.01). 54.8% of differences in knee moments could be predicted by the magnitude of the GRF (2.3±0.3; 2.4±0.2BW), knee flexion angle (44±6; 41±7) and center of pressure location on the foot (25±11; 12±6%) at time of peak knee moment. Results were not consistent in all subjects. It was concluded that BR had reduced PFJCF compared to FR. This was caused by an increased knee moment, due to differences in magnitude and location of the GRF vector relative to the knee. BR can therefore be used to exercise with decreased PFJCF.  相似文献   
7.

Background

Disruptive selection has been documented in a growing number of natural populations. Yet, its prevalence within individual systems remains unclear. Furthermore, few studies have sought to identify the ecological factors that promote disruptive selection in the wild. To address these issues, we surveyed 15 populations of Mexican spadefoot toad tadpoles, Spea multiplicata, and measured the prevalence of disruptive selection acting on resource-use phenotypes. We also evaluated the relationship between the strength of disruptive selection and the intensity of intraspecific competition??an ecological agent hypothesized to be an important driver of disruptive selection.

Results

Disruptive selection was the predominant mode of quadratic selection across all populations. However, a directional component of selection favoring an extreme ecomorph??a distinctive carnivore morph??was also common. Disruptive selection was strongest in populations experiencing the most intense intraspecific competition, whereas stabilizing selection was only found in populations experiencing relatively weak intraspecific competition.

Conclusions

Disruptive selection can be common in natural populations. Intraspecific competition for resources may be a key driver of such selection.  相似文献   
8.
Microbial Community Composition Affects Soil Fungistasis   总被引:9,自引:0,他引:9       下载免费PDF全文
Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.  相似文献   
9.
Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question.  相似文献   
10.
Endogenous biological clocks allow organisms to anticipate daily environmental cycles. The ability to achieve time-place associations is key to the survival and reproductive success of animals. The ability to link the location of a stimulus (usually food) with time of day has been coined time-place learning, but its circadian nature was only shown in honeybees and birds. So far, an unambiguous circadian time-place-learning paradigm for mammals is lacking. We studied whether expression of the clock gene Cryptochrome (Cry), crucial for circadian timing, is a prerequisite for time-place learning. Time-place learning in mice was achieved by developing a novel paradigm in which food reward at specific times of day was counterbalanced by the penalty of receiving a mild footshock. Mice lacking the core clock genes Cry1 and Cry2 (Cry double knockout mice; Cry1(-/-)Cry2(-/-)) learned to avoid unpleasant sensory experiences (mild footshock) and could locate a food reward in a spatial learning task (place preference). These mice failed, however, to learn time-place associations. This specific learning and memory deficit shows that a Cry-gene dependent circadian timing system underlies the utilization of time of day information. These results reveal a new functional role of the mammalian circadian timing system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号