首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2013年   2篇
  2012年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有12条查询结果,搜索用时 140 毫秒
1.
The patch-clamp technique was used to investigate the properties of a cation-selective channel in the basolateral membrane of microdissected collagenase-treated fragments of cortical thick ascending limbs of Henle's loop from mouse kidney. The channel activity was seldom observed in cell-attached patches (2 out 15 studied cases). In inside-out excised patches immersed in symmetrical NaCl Ringer's solutions, the unit channel conductance was ohmic and ranged from 22 to 33 pS (mean, 26.8 +/- 0.6 pS, n = 24). When NaCl was replaced by KCl (n = 8) or sodium gluconate (n = 2) on the cytoplasmic side of the membrane, single-channel currents still reversed at 0 mV and the conductance was unchanged. The reversal potential was +28.8 +/- 0.4 mV (n = 8) when a NaCl concentration (140 vs. 42 mmol/l) gradient was applied, close to the expected value (approx. 30 mV) for a cation selective channel. The channel was found to discriminate poorly between Na+, K+, Cs+, and Li+ ions. The activity of the channel was not clearly voltage-dependent but was dependent upon the free Ca2+ concentration on the cytoplasmic side of the membrane. We conclude that the channel resembles the non-selective cation channel which has been previously described in several tissues.  相似文献   
2.
Several Cl channels have been described in the native renal tubule, but their correspondence with ClC-K1 and ClC-K2 channels (orthologs of human ClC-Ka and ClC-Kb), which play a major role in transcellular Cl absorption in the kidney, has yet to be established. This is partly because investigation of heterologous expression has involved rat or human ClC-K models, whereas characterization of the native renal tubule has been done in mice. Here, we investigate the electrophysiological properties of mouse ClC-K1 channels heterologously expressed in Xenopus laevis oocytes and in HEK293 cells with or without their accessory Barttin subunit. Current amplitudes and plasma membrane insertion of mouse ClC-K1 were enhanced by Barttin. External basic pH or elevated calcium stimulated currents followed the anion permeability sequence Cl > Br > NO3 > I. Single-channel recordings revealed a unit conductance of ~ 40 pS. Channel activity in cell-attached patches increased with membrane depolarization (voltage for half-maximal activation: ~ − 65 mV). Insertion of the V166E mutation, which introduces a glutamate in mouse ClC-K1, which is crucial for channel gating, reduced the unit conductance to ~ 20 pS. This mutation shifted the depolarizing voltage for half-maximal channel activation to ~ + 25 mV. The unit conductance and voltage dependence of wild-type and V166E ClC-K1 were not affected by Barttin. Owing to their strikingly similar properties, we propose that the ClC-K1/Barttin complex is the molecular substrate of a chloride channel previously detected in the mouse thick ascending limb (Paulais et al., J Membr. Biol, 1990, 113:253–260).  相似文献   
3.
The application of Ca2+ mobilizing secretagogues to rat parotid acini results in a significant decrease in cell volume (15-30%) due to isotonic salt loss. It is often assumed that the effects of such an isotonic volume decrease can be mimicked by anisotonic cell shrinkage. We demonstrate that the Na+-K+-2Cl- cotransporter in these cells is up-regulated by Ca2+ mobilizing secretagogues as well as by cell shrinkage in hypertonic media. However, we find that although the protein kinase inhibitors staurosporine (0.3 M) and K252a (0.6 M) significantly blunt the latter up-regulation, they are without effect on the former. These observations suggest that hypertonic and isotonic shrinkage do not result in the activation of the same intracellular signalling pathways, and indicate that anisotonic volume perturbations may not provide good experimental models of physiologic isotonic volume changes.  相似文献   
4.
Summary The properties of an anion-selective channel observed in basolateral membranes of microdissected, collagenase-treated, cortical thick ascending limbs of Henle's loop from mouse kidney were investigated using patch-clamp single-channel recording techniques. In basal conditions, single Cl currents were detected in 8% of cell-attached and excised, inside-out, membrane patches whereas they were observed in 24% of cell-attached and 67% of inside-out membrane patches when tubular fragments were preincubated with Forskolin (10–5 m) or 8-bromo-cAMP (10–4 m) and isobutylmethylxanthine (10–5 m). The channel exhibited a linear current-voltage relationship with conductances of about 40 pS in both cell-attached and cell-free membrane configurations. AP Na + P Cl ratio of 0.05 was estimated in the presence of a 142/42mm NaCl concentration gradient applied to inside-out membrane patches. Anionic selectivity of the channel followed the sequence Cl>Br>No 3 F; gluconate was not a permeant species. The open-state probability of the channel increased with membrane depolarization in cell-attached, i.e.,in situ membrane patches. In excised, inside-out, membrane patches, the channel was predominantly open with the open-state probability close to 0.8 over the whole range of potentials tested (–60 to +60 mV). The channel activity was not a function of internal calcium concentration between 10–9 and 10–3 m. We suggest that this Cl channel, whose properties are distinct from those in other epithelia, could account for the well-documented conductance which mediates Cl exit in the basolateral step of NaCl absorption in thick ascending limb of Henle's loop.  相似文献   
5.
This study investigates the presence and properties of Na+-activated K+ (K(Na)) channels in epithelial renal cells. Using real-time PCR on mouse microdissected nephron segments, we show that Slo2.2 mRNA, which encodes for the K(Na) channels of excitable cells, is expressed in the medullary and cortical thick ascending limbs of Henle's loop, but not in the other parts of the nephron. Patch-clamp analysis revealed the presence of a high conductance K+ channel in the basolateral membrane of both the medullary and cortical thick ascending limbs. This channel was highly K+ selective (P(K)/P(Na) approximately 20), its conductance ranged from 140 to 180 pS with subconductance levels, and its current/voltage relationship displayed intermediate, Na+-dependent, inward rectification. Internal Na+ and Cl- activated the channel with 50% effective concentrations (EC50) and Hill coefficients (nH) of 30 +/- 1 mM and 3.9 +/- 0.5 for internal Na+, and 35 +/- 10 mM and 1.3 +/- 0.25 for internal Cl-. Channel activity was unaltered by internal ATP (2 mM) and by internal pH, but clearly decreased when internal free Ca2+ concentration increased. This is the first demonstration of the presence in the epithelial cell membrane of a functional, Na+-activated, large-conductance K+ channel that closely resembles native K(Na) channels of excitable cells. This Slo2.2 type, Na+- and Cl--activated K+ channel is primarily located in the thick ascending limb, a major renal site of transcellular NaCl reabsorption.  相似文献   
6.
Non-selective cation channels have been described in the basolateral membrane of the renal tubule, but little is known about functional channels on the apical side. Apical membranes of microdissected fragments of mouse cortical thick ascending limbs were searched for ion channels using the cell-free configuration of the patch-clamp technique. A cation channel with a linear current-voltage relationship (19pS) that was permeable both to monovalent cations [P(NH4)(1.7)>P(Na) (1.0)=P(K) (1.0)] and to Ca(2+) (P(Ca)/P(Na)≈0.3) was detected. Unlike the basolateral TRPM4 Ca(2+)-impermeable non-selective cation channel, this non-selective cation channel was insensitive to internal Ca(2+), pH and ATP. The channel was already active after patch excision, and its activity increased after reduced pressure was applied via the pipette. External gadolinium (10(-5)M) decreased the channel-open probability by 70% in outside-out patches, whereas external amiloride (10(-4)M) had no effect. Internal flufenamic acid (10(-4)M) inhibited the channel in inside-out patches. Its properties suggest that the current might be supported by the TRPM7 protein that is expressed in the loop of Henle. The conduction properties of the channel suggest that it could be involved in Ca(2+) signaling.  相似文献   
7.
Mechanical forces associated with fluid flow and/or circumferential stretch are sensed by renal epithelial cells and contribute to both adaptive or disease states. Non‐selective stretch‐activated ion channels (SACs), characterized by a lack of inactivation and a remarkably slow deactivation, are active at the basolateral side of renal proximal convoluted tubules. Knockdown of Piezo1 strongly reduces SAC activity in proximal convoluted tubule epithelial cells. Similarly, overexpression of Polycystin‐2 (PC2) or, to a greater extent its pathogenic mutant PC2‐740X, impairs native SACs. Moreover, PC2 inhibits exogenous Piezo1 SAC activity. PC2 coimmunoprecipitates with Piezo1 and deletion of its N‐terminal domain prevents both this interaction and inhibition of SAC activity. These findings indicate that renal SACs depend on Piezo1, but are critically conditioned by PC2.  相似文献   
8.
The bumetanide-sensitive component of pHi recovery from an NH4Cl-induced acute alkaline load was used as a measure of Na(+)-K(+)-2Cl- cotransport activity in rat parotid acini. Acinar treatment with NaF/AlCl3 (15 mM NaF plus 10 microM AlCl3) induced a 5-fold stimulation in the initial rate of bumetanide-sensitive pHi recovery. This effect was dependent on NaF concentration (K1/2 approximately 7 mM) and was blunted in the presence of the Al3+ chelator desferal mesylate suggesting that it might be due to the aluminofluoride ion, AlF-4. NaF/AlCl3 treatment did not increase acinar intracellular cAMP levels but did result in an increase in intracellular calcium concentration (from 87 +/- 5 to 181 +/- 2 nM) and in acinar cell shrinkage (12 +/- 1%). But the stimulation of the Na(+)-K(+)-2Cl- cotransporter by NaF/AlCl3 persisted in acini which had been depleted of their intracellular Ca2+ stores. In these acini no effect of NaF/AlCl3 on intracellular calcium or cell volume was observed, indicating that stimulation of the cotransporter was not secondary to either of these phenomena. The effect of NaF/AlCl3 on the cotransporter was blocked by the protein kinase inhibitor K252a indicating the involvement of a protein phosphorylation event. This result is consistent with either NaF/AlCl3-dependent protein kinase activation or phosphatase inhibition. The stimulation of the cotransporter by NaF/AlCl3 was mimicked by the protein phosphatase inhibitor calyculin A; however, this effect was not blocked by K252a suggesting that a different protein kinase from that associated with NaF/AlCl3 may be involved. The data indicate that the Na(+)-K(+)-2Cl- cotransporter in this tissue is under tight regulatory control, in all likelihood via multiple protein kinase/phosphatase systems. The physiological roles of these regulatory events in modulating acinar fluid secretion driven by the Na(+)-K(+)-2Cl- cotransporter remain to be elucidated.  相似文献   
9.
10.
The HIV-1 envelope glycoprotein gp120/160 has pleiotropic effects on T cell function. We investigated whether Ca(2+) signaling, a crucial step for T cell activation, was altered by prolonged exposure of Jurkat T cells to gp160. Microfluorometric measurements showed that Jurkat cells incubated with gp160 had smaller (approximately 40%) increases in [Ca(2+)](i) in response to phytohemagglutinin and had a reduced Ca(2+) influx (approximately 25%). gp160 had similar effects on Jurkat cells challenged with thapsigargin. We used the patch clamp technique to record the Ca(2+) current, which is responsible for Ca(2+) influx and has properties of the calcium release-activated Ca(2+) current (I(CRAC)). gp160 reduced I(CRAC) by approximately 40%. The inhibitory effects of gp160 were antagonized by staurosporine (0.1 microm), an inhibitor of protein-tyrosine kinases and protein kinase Cs (PKCs), and by G? 6976 (5 microm), an inhibitor acting especially on PKC alpha and PKC beta I. 12-O-Tetradecanoyl phorbol 13-acetate (16 nm), a PKC activator, reproduced the effects of gp160 in untreated cells. A Western blotting analysis of PKC isoforms alpha, beta I, delta, and zeta showed that only the cellular distribution of PKC alpha and -beta I were significantly modified by gp160. In addition, gp160 was able to modify the subcellular distribution of PKC alpha and PKC beta I caused by phytohemagglutinin. Therefore the reduction in I(CRAC) caused by prolonged incubation with gp160 is probably mediated by PKC alpha or -beta I.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号