首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  3篇
  2021年   1篇
  2014年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing nations, while in rich nations, intensive N fertilization carries substantial environmental and economic costs. Therefore, understanding root phenes that enhance N acquisition is of considerable importance. Structural-functional modeling predicts that root cortical aerenchyma (RCA) could improve N acquisition in maize (Zea mays). We evaluated the utility of RCA for N acquisition by physiological comparison of maize recombinant inbred lines contrasting in RCA grown under suboptimal and adequate N availability in greenhouse mesocosms and in the field in the United States and South Africa. N stress increased RCA formation by 200% in mesocosms and by 90% to 100% in the field. RCA formation substantially reduced root respiration and root N content. Under low-N conditions, RCA formation increased rooting depth by 15% to 31%, increased leaf N content by 28% to 81%, increased leaf chlorophyll content by 22%, increased leaf CO2 assimilation by 22%, increased vegetative biomass by 31% to 66%, and increased grain yield by 58%. Our results are consistent with the hypothesis that RCA improves plant growth under N-limiting conditions by decreasing root metabolic costs, thereby enhancing soil exploration and N acquisition in deep soil strata. Although potential fitness tradeoffs of RCA formation are poorly understood, increased RCA formation appears be a promising breeding target for enhancing crop N acquisition.Nitrogen (N) deficiency is one of the most limiting factors in maize (Zea mays) production worldwide (Ladha et al., 2005). In developing countries such as those in sub-Saharan Africa, less than 20 kg N ha−1 is applied to fields of smallholder farmers due to high fertilizer cost (Azeez et al., 2006; Worku et al., 2007). In developed countries, intensive N fertilization is used to maintain satisfactory yield (Tilman et al., 2002). In the United States, N fertilizers are the greatest economic and energy cost for maize production (Ribaudo et al., 2011). However, less than half of the N applied to crops is actually acquired, and most of the remaining N becomes a source of environmental pollution (Raun and Johnson, 1999; Smil, 1999; Tilman et al., 2002). For example, N and phosphorus (P) effluents into marine systems from agriculture cause eutrophication and hypoxic zones (Diaz and Rosenberg, 2008; Robertson and Vitousek, 2009). Nitrate contamination in surface water and groundwater systems poses serious health risks, such as methemoglobinemia and N-nitroso-induced cancers (UNEP and WHRC, 2007). Emission of nitrous oxides from agricultural activities contributes to ozone damage and global warming (Kulkarni et al., 2008; Sutton et al., 2011). Furthermore, the production of N fertilizers requires considerable energy from fossil fuels, and since energy costs have risen in recent years, farmers face economic pressure from increasing N fertilizer costs, which are linked to higher food prices. It is estimated that a 1% increase in crop N efficiency could save more than $1 billion (U.S.) annually worldwide (Kant et al., 2011). Therefore, even a small improvement in N efficiency would have significant positive impacts on the environment and the economy.Soil N is heterogenous and dynamic. The bioavailability of soil N depends on the balance between the rates of mineralization, nitrification, and denitrification. These processes are determined by several factors, including soil composition, microbial activity, soil temperature, and soil water status (Miller and Cramer, 2004). The predominant form of soil N available to plants in most agricultural systems is nitrate, which is highly soluble in water and thus mobile in the soil (Barber, 1995; Marschner, 1995). Mineralization of organic matter and/or the application of N fertilizer at the beginning of the growing season followed by precipitation and irrigation create a pulse of nitrate that may exceed the N acquisition capacity of seedlings and leach below the root zone. Therefore, it has been proposed that increasing the speed of root exploration of deep soil strata could benefit N acquisition (Lynch, 2013). However, the structural investments and metabolic expenditures of root systems are substantial and can exceed half of daily photosynthesis (Lambers et al., 2002). Therefore, full consideration of the costs and benefits of root systems is crucial for identifying root traits to improve crop production, especially in water- and nutrient-deficient environments (Lynch, 2007). Taking rhizoeconomics and the spatiotemporal availability of soil N into account, Lynch (2013) proposed a root ideotype for enhanced N acquisition in maize called Steep, Cheap, and Deep, in which Steep refers to architectural phenes and Cheap refers to phenes that reduce the metabolic cost of soil exploration. One element of this ideotype is abundant root cortical aerenchyma (RCA).RCA consists of enlarged air spaces in the root cortex (Esau, 1977). RCA is known to form in response to hypoxia, and the role of RCA in improving oxygen transport to roots of many plant species under hypoxic conditions has been well researched (Vartapetian and Jackson, 1997; Jackson and Armstrong, 1999; Mano and Omori, 2007, 2013). Interestingly, RCA can also form in response to drought and edaphic stresses such as N, P, and sulfur deficiencies (Drew et al., 1989; Bouranis et al., 2003; Fan et al., 2003; Zhu et al., 2010a), which suggests that the benefit of RCA extends beyond facilitating oxygen transport. Several lines of evidence suggest that RCA enhances root metabolic efficiency under stress. Fan et al. (2003) found that RCA formation significantly reduced root segment respiration and P content of root tissue, which allowed greater shoot growth in soils with low P availability. Under drought, maize genotypes with high RCA formation had greater root length, deeper rooting, better leaf water status, and 8 times greater yield than closely related genotypes with low RCA (Zhu et al., 2010a). Effects of RCA on root respiration were more pronounced for large-diameter roots compared with small-diameter roots (Jaramillo et al., 2013). Results from the functional-structural plant model SimRoot showed that RCA formation could be an adaptive response to deficiency of N, P, and potassium by decreasing the metabolic cost of soil exploration. By reducing root respiration, RCA decreases the carbon cost of soil exploration, and by decreasing the N and P content of root tissue, RCA permits internal reallocation of nutrients to growing root tissue, which is particularly beneficial under conditions of low N and P availability (Postma and Lynch, 2011a). Under suboptimal P availability, RCA increased the growth of a simulated 40-d-old maize plant by 70% (Postma and Lynch, 2011b). In the case of N, RCA increased the growth of simulated maize plants up to 55% in low-N conditions, and plants benefit from RCA more in high-N-leaching environments than in low-N-leaching environments (Postma and Lynch, 2011a). In addition, the formation of RCA decreases critical soil nutrient levels, defined as the soil fertility below which growth is reduced, suggesting that cultivars with high RCA may require less fertilizer under nonstressed conditions. These in silico results suggest that RCA has potential utility for improving crop nutrient acquisition in both high- and low-input agroecosystems.The overall objective of this research was to assess the utility of RCA for N acquisition in maize under N-limiting conditions. Maize near-isophenic recombinant inbred lines (RILs) sharing a common genetic background (i.e. descending from the same parents) with common root phenotypes but contrasting in RCA formation were grown under N stress to test the hypothesis that RCA formation is associated with reduced root respiration, reduced tissue nutrient content, greater rooting depth, enhanced N acquisition, and therefore greater plant growth and yield under N limitation.  相似文献   
2.
Background and AimsThe utility of root hairs for nitrogen (N) acquisition is poorly understood.MethodsWe explored the utility of root hairs for N acquisition in the functional–structural model SimRoot and with maize genotypes with variable root hair length (RHL) in greenhouse and field environments.Key ResultsSimulation results indicate that long, dense root hairs can improve N acquisition under varying N availability. In the greenhouse, ammonium availability had no effect on RHL and low nitrate availability increased RHL, while in the field low N reduced RHL. Longer RHL was associated with 216 % increase in biomass and 237 % increase in plant N content under low-N conditions in the greenhouse and a 250 % increase in biomass and 200 % increase in plant N content in the field compared with short-RHL phenotypes. In a low-N field environment, genotypes with long RHL had 267 % greater yield than those with short RHL. We speculate that long root hairs improve N capture by increased root surface area and expanded soil exploration beyond the N depletion zone surrounding the root surface.ConclusionsWe conclude that root hairs play an important role in N acquisition. We suggest that root hairs merit consideration as a breeding target for improved N acquisition in maize and other crops.  相似文献   
3.
In developing nations, low soil nitrogen (N) availability is a primary limitation to crop production and food security, while in rich nations, intensive N fertilization is a primary economic, energy, and environmental cost to crop production. It has been proposed that genetic variation for root architectural and anatomical traits enhancing the exploitation of deep soil strata could be deployed to develop crops with greater N acquisition. Here, we provide evidence that maize (Zea mays) genotypes with few crown roots (crown root number [CN]) have greater N acquisition from low-N soils. Maize genotypes differed in their CN response to N limitation in greenhouse mesocosms and in the field. Low-CN genotypes had 45% greater rooting depth in low-N soils than high-CN genotypes. Deep injection of 15N-labeled nitrate showed that low-CN genotypes under low-N conditions acquired more N from deep soil strata than high-CN genotypes, resulting in greater photosynthesis and plant N content. Under low N, low-CN genotypes had greater biomass than high-CN genotypes at flowering (85% in the field study in the United States and 25% in South Africa). In the field in the United States, 1.8× variation in CN was associated with 1.8× variation in yield reduction by N limitation. Our results indicate that CN deserves consideration as a potential trait for genetic improvement of N acquisition from low-N soils.Maize (Zea mays) is one of the world’s most important crops and is a staple food in Latin America and Africa. Maize production requires a large amount of fertilizer, especially nitrogen (N). In the United States, N fertilizers represent the greatest economic and energy costs for maize production (Ribaudo et al., 2011). However, on-farm studies across the northcentral United States revealed that more than half of applied N is not taken up by maize plants and is vulnerable to losses from volatilization, denitrification, and leaching, which pollute air and water resources (Cassman et al., 2002). Conversely, in developing countries, suboptimal N availability is a primary limitation to crop yields and, therefore, food security (Azeez et al., 2006). Increasing yield in these areas is an urgent concern, since chemical fertilizers are not affordable (Worku et al., 2007). Cultivars with greater N acquisition from low-N soils could help alleviate food insecurity in poor nations as well as reduce environmental degradation from excessive fertilizer use in developed countries.The two major soil N forms available to plants are ammonium and nitrate. Nitrate is the main N form in most maize production environments (Miller and Cramer, 2004). Nitrate is highly mobile in soil, and the spatiotemporal availability of soil N is rather complex. In the simplest case, N fertilizers applied to the soil and/or N released from the mineralization of soil organic matter are rapidly converted to nitrate by soil microbes. After irrigation and precipitation events, nitrate moves with water to deeper soil strata. Leaching of nitrate from the root zone has been shown to be a significant cause of low recovery of N fertilizer in commercial agricultural systems (Raun and Johnson, 1999; Cassman et al., 2002). Differences in root depth influence the ability of plants to acquire N. Studies using 15N-labeled nitrate placed at different soil depths showed that only plants with deep rooting can acquire N sources from deep soil strata, which would otherwise have been lost through leaching (Kristensen and Thorup-Kristensen, 2004a, 2004b). Therefore, selection for root traits enhancing rapid deep soil exploration could be used as a strategy to improve crop N efficiency.The maize root system consists of embryonic and postembryonic components. The embryonic root system consists of two distinct root classes: a primary root and a variable number of seminal roots formed at the scutellar node. The postembryonic root system consists of roots that are formed at consecutive shoot nodes and lateral roots, which are initiated in the pericycle of all root classes. Shoot-borne or nodal roots that are formed belowground are called crown roots, whereas those that are formed aboveground are designated brace roots (Hochholdinger, 2009). While the primary root and seminal roots are essential for the establishment of seedlings after germination, nodal roots and particularly crown roots make up most of the maize root system and are primarily responsible for soil resource acquisition later in development (Hoppe et al., 1986).Lynch (2013) proposed an ideotype for superior N and water acquisition in maize called Steep, Cheap, and Deep (SCD), which integrates root architectural, anatomical, and physiological traits to increase rooting depth and, therefore, the capture of N in leaching environments. One such trait is crown root number (CN). CN is an aggregate trait consisting of the number of belowground nodal whorls and the number of roots per whorl. The crown root system dominates resource acquisition during vegetative growth after the first few weeks and remains important during reproductive development (Hochholdinger et al., 2004). CN in maize ranges from five to 50 under fertile conditions (Trachsel et al., 2011). At the low end of this range, crown roots may be too spatially dispersed to sufficiently explore the soil. There is also a risk of root loss to herbivores and pathogens. If roots are lost in low-N plants, there may be too few crown roots left to support the nutrient, water, and anchorage needs of the plant. At the high end, a large number of crown roots may compete with each other for water and nutrients as well as incur considerable metabolic costs for the plant (Fig. 1). The SCD ideotype proposes that there is an optimal CN for N capture in maize (Lynch, 2013). Under low-N conditions, resources for root growth and maintenance are limiting, and nitrate is a mobile resource that can be captured by a dispersed root system. The optimal CN should tend toward the low end of the phenotypic variation to make resources available for the development of longer, deeper roots rather than more crown roots. According to the SCD ideotype, in low-N soils, maize genotypes with fewer crown roots could explore soils at greater depth, resulting in greater N acquisition, growth, and yield than genotypes with many crown roots.Open in a separate windowFigure 1.Visualization of the maize root system of low- and high-CN genotypes at 40 d after germination. Crown roots are colored in blue, and seminal roots are in red. The CN is eight in the low-CN genotype and 46 in the high-CN genotype. (Image courtesy of Larry M. York.)The objective of this study was to test the hypotheses that (1) low-CN genotypes have greater rooting depth than high-CN genotypes in low-N soils; (2) low-CN genotypes are better at acquiring deep soil N than high-CN genotypes; and (3) low-CN genotypes have greater biomass and yield than high-CN genotypes in low-N conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号