首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  2015年   1篇
  2009年   3篇
  2008年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The recent outbreak of the novel strain of influenza A (H1N1) virus has raised a global concern of the future risk of a pandemic. To understand at the molecular level how this new H1N1 virus can be inhibited by the current anti-influenza drugs and which of these drugs it is likely to already be resistant to, homology modeling and MD simulations have been applied on the H1N1 neuraminidase complexed with oseltamivir, and the M2-channel with adamantanes bound. The H1N1 virus was predicted to be susceptible to oseltamivir, with all important interactions with the binding residues being well conserved. In contrast, adamantanes are not predicted to be able to inhibit the M2 function and have completely lost their binding with the M2 residues. This is mainly due to the fact that the M2 transmembrane of the new H1N1 strain contains the S31N mutation which is known to confer resistance to adamantanes.  相似文献   
2.
Molecular dynamics simulations were carried out for the mutant oseltamivir-NA complex, to provide detailed information on the oseltamivir-resistance resulting from the H274Y mutation in neuraminidase (NA) of avian influenza H5N1 viruses. In contrast with a previous proposal, the H274Y mutation does not prevent E276 and R224 from forming the hydrophobic pocket for the oseltamivir bulky group. Instead, reduction of the hydrophobicity and size of pocket in the area around an ethyl moiety at this bulky group were found to be the source of the oseltamivir-resistance. These changes were primarily due to the dramatic rotation of the hydrophilic –COO group of E276 toward the ethyl moiety. In addition, hydrogen-bonding interactions with N1 residues at the -NH3 + and -NHAc groups of oseltamivir were replaced by a water molecule. The calculated binding affinity of oseltamivir to NA was significantly reduced from −14.6 kcal mol−1 in the wild-type to −9.9 kcal mol−1 in the mutant-type.  相似文献   
3.
To reveal the source of oseltamivir-resistance in influenza (A/H5N1) mutants, the drug-target interactions at each functional group were investigated using MD/LIE simulations. Oseltamivir in the H274Y mutation primarily loses the electrostatic and the vdW interaction energies at the –NH3+ and –OCHEt2 moieties corresponding to the weakened hydrogen-bonds and changed distances to N1 residues. Differentially, the N294S mutation showed small changes of binding energies and intermolecular interactions. Interestingly, the presence of different conformations of E276 positioned between the –OCHEt2 group and the mutated residue is likely to play an important role in oseltamivir-resistant identification. In the H274Y mutant, it moves towards the –OCHEt2 group leading to a reduction in hydrophobicity and pocket size, whilst in the N294S mutant it acts as the hydrogen network center bridging with R224 and the mutated residue S294. The molecular details have answered a question of how the H274Y and N294S mutations confer the high- and medium-level of oseltamivir-resistance to H5N1.  相似文献   
4.
The origin of the high pathogenicity of an emerging avian influenza H5N1 due to the -RRRKK- insertion at the cleavage loop of the hemagglutinin H5, was studied using the molecular dynamics technique, in comparison with those of the noninserted H5 and H3 bound to the furin (FR) active site. The cleavage loop of the highly pathogenic H5 was found to bind strongly to the FR cavity, serving as a conformation suitable for the proteolytic reaction. With this configuration, the appropriate interatomic distances were found for all three reaction centers of the enzyme-substrate complex: the arrangement of the catalytic triad, attachment of the catalytic Ser368 to the reactive S1-Arg, and formation of the oxyanion hole. Experimentally, the -RRRKK- insertion was also found to increase in cleavage of hemagglutinin by FR. The simulated data provide a clear answer to the question of why inserted H5 is better cleaved by FR than the other subtypes, explaining the high pathogenicity of avian influenza H5N1.  相似文献   
5.
Behçet’s disease (BD), a multi-organ inflammatory disorder, is associated with the presence of the human leukocyte antigen (HLA) HLA-B*51 allele in many ethnic groups. The possible antigen involvement of the major histocompatibility complex class I chain related gene A transmembrane (MICA-TM) nonapeptide (AAAAAIFVI) has been reported in BD symptomatic patients. This peptide has also been detected in HLA-A*26:01 positive patients. To investigate the link of BD with these two specific HLA alleles, molecular dynamics (MD) simulations were applied on the MICA-TM nonapeptide binding to the two BD-associated HLA alleles in comparison with the two non-BD-associated HLA alleles (B*35:01 and A*11:01). The MD simulations were applied on the four HLA/MICA-TM peptide complexes in aqueous solution. As a result, stabilization for the incoming MICA-TM was found to be predominantly contributed from van der Waals interactions. The P2/P3 residue close to the N-terminal and the P9 residue at the C-terminal of the MICA-TM nonapeptide served as the anchor for the peptide accommodated at the binding groove of the BD associated HLAs. The MM/PBSA free energy calculation predicted a stronger binding of the HLA/peptide complexes for the BD-associated HLA alleles than for the non-BD-associated ones, with a ranked binding strength of B*51:01 > B*35:01 and A*26:01 > A*11:01. Thus, the HLAs associated with BD pathogenesis expose the binding efficiency with the MICA-TM nonapeptide tighter than the non-associated HLA alleles. In addition, the residues 70, 73, 99, 146, 147 and 159 of the two BD-associated HLAs provided the conserved interaction for the MICA-TM peptide binding.  相似文献   
6.
To provide detailed information and insight into the drug-target interaction, structure, solvation, and dynamic and thermodynamic properties, the three known-neuraminidase inhibitors-oseltamivir (OTV), zanamivir (ZNV), and peramivir (PRV)-embedded in the catalytic site of neuraminidase (NA) subtype N1 were studied using molecular dynamics simulations. In terms of ligand conformation, there were major differences in the structures of the guanidinium and the bulky groups. The atoms of the guanidinium group of PRV were observed to form many more hydrogen bonds with the surrounded residues and were much less solvated by water molecules, in comparison with the other two inhibitors. Consequently, D151 lying on the 150-loop (residues 147-152) of group-1 neuraminidase (N1, N4, N5, and N8) was considerably shifted to form direct hydrogen bonds with the --OH group of the PRV, which was located rather far from the 150-loop. For the bulky group, direct hydrogen bonds were detected only between the hydrophilic side chain of ZNV and residues R224, E276, and E277 of N1 with rather weak binding, 20-70% occupation. This is not the case for OTV and PRV, in which flexibility and steric effects due to the hydrophobic side chain lead to the rearrangement of the surrounded residues, that is, the negatively charged side chain of E276 was shifted and rotated to form hydrogen bonds with the positively charged moiety of R224. Taking into account all the ligand-enzyme interaction data, the gas phase MM interaction energy of -282.2 kcal/mol as well as the binding free energy (DeltaG(binding)) of -227.4 kcal/mol for the PRV-N1 are significantly lower than those of the other inhibitors. The ordering of DeltaG(binding) of PRV < ZNV < OTV agrees well with the ordering of experimental IC(50) value.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号